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Quantitative Analysis Method of Lubricant Base Oil Composition

Based on Combined Optimized Characteristic Wavenumber

XIA Yangiu®, NAY MINAUNG, WANG Yuxing, FENG Xin

(School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206)

Abstract: For the quantitative analysis of lube oil base oil components, three oil
components, mineral oil (KN4010), hydrocarbon-based synthetic oil (PAO40), and
synthetic ester (PriEco 3000) were selected as quantitative analysis objects, and then
the mid-infrared spectral data of lube oil base oil samples formulated in different ratios
were collected. The synergy interval partial least squares-binary grey wolf optimization
algorithm (SiPLS-BGWO) combination optimization method was used to screen the
characteristic wavenumbers in the full range to eliminate redundant invalid information
and reduce the search space dimension. By optimizing the selection of characteristic

wavenumbers, the SIPLS-BGWO approach not only enhanced the prediction accuracy
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but also demonstrated its ability to address challenges associated with overlapping
spectral features in complex mixtures. The test results showed that the combined
optimization model's error indexes were significantly improved for the content
prediction of mineral oil, hydrocarbon-based synthetic oil, and polyol ester. The RMSE
(root mean square error) was reduced by up to 60.58% compared to using all spectral
wavenumbers, and the fit indexes' R2 values were higher than 99%. The significant
reduction in RMSE underscored the method's capability to identify and eliminate
irrelevant or noisy spectral information, ensuring that the predictive model focused only
on relevant features. In addition, the SIPLS-BGWO method had reduced the number of
characteristic wavenumbers to less than 40, significantly reducing the operational
burden and effectively improving the accuracy and applicability of the quantitative
analysis model for multi-matter components. The ability to reduce the number of
characteristic wavenumbers to below 40 demonstrated the algorithm's efficiency in
dimensionality reduction while retaining essential predictive information. The results
affirmed that the SiPLS-BGWO model was a powerful tool for predictive modeling,
providing a balance between accuracy and efficiency in the quantitative analysis of
multi-component systems. And a novel framework for bridging the gap between
spectral data complexity and actionable chemical insights, setting a precedent for future
developments in the field.
Key words: lubricant base oil; mid-infrared spectroscopy; feature wavenumber
screening; interval band screening; combinatorial optimization model
1. Introduction

As we all know, lubricants are composed of base oils and additives, and there are
three main types of base oils: including mineral-based oils, synthetic-based oils, and
vegetable-based oils. Mineral-based oils are widely used!!), with more than 90% of the
usage, but some applications must use synthetic or vegetable oils in combination with
mineral oils. Usually, the base oil determines the appearance, density, viscosity, flash
point, freezing point, pour point, moisture, mechanical impurities, residual carbon, etc.
Of course, some additives can also improve and enhance the above properties. Although

lubricant base oil accounts for 95%~99% of the total weight of oil products, the class



of oil products is diverse and complex. The lubricant product's performance and
appearance cannot identify the lubricant class nor determine its composition content?),
The standard measure to identify and analyze the content of lubricant base oils is to use
traditional physical and chemical tests and other methods to determine and analyze.
Still, it is relatively complex to identify the types of mixed base oils, especially when
determining the content of base oil components, which is more complicated. The
samples' mid-infrared spectral information was obtained using Fourier transform
infrared radiation (FT-IR) and processed using first and second derivatives,
complementing methods such as Raman spectroscopy, performance testing, and gas
chromatography®!. These methods are mostly affected by human factors such as high

[4-6] 'so an accurate and

time and labour costs, and the results have significant errors
effective oil analysis technique is needed. Mid-infrared spectroscopy has the advantage
of being non-destructive and rapid as well as large and low-cost, so it is widely used
for both qualitative and quantitative analysis of the composition of substances [-8],
Machine-learning data analysis processing methods are required for determination and
analysis to find the relevant characteristic peaks of infrared spectra quickly, eliminate
interfering factors, and complete the task of substance identification and content
prediction. However, most studies in lubricant analysis have primarily focused on oil
identification tests®. Only a limited number of studies have been conducted on the
identification and content analysis of base oils within the latest categories of oils!!l.
Lubricant composition content has an essential impact on its performance, and
traditional lubricant development has been carried out mainly using repeated extensive
design experiments and performance testing!!!!. Only by choosing the right proportional
content of blended lubricants can they meet the requirements, so quantitative analysis
and control of the constituent components in the oil development process is required.
In this paper, we start with infrared spectroscopy and combine the machine learning
method of intelligent optimization algorithm to construct a quantitative analysis model
of the lubricant composition. The commonly used algorithm for creating predictive

models is partial least squares (PLS)!'*!3, a classical linear modelling method that can

overcome the covariance problem and reduce noise interference, and the analysis of



spectral data is widely used. For mid-infrared spectral-type data with many features, the
training process will occupy a lot of memory, prolong the computing time, and seriously
degrade the prediction quality!'¥. Therefore, screening out redundant information and
reducing the search dimension is necessary, so filtering the characteristic wavenumbers
of mid-infrared spectra is essential. Spectral feature wavenumber screening methods
are divided into feature band screening algorithms and feature point screening
algorithms. The commonly used feature band screening algorithms include interval
partial least squares (iPLS)!">!7] Synergy interval partial least squares (SiPLS)!'8], and
backward interval partial least squares (BiPLS)!'> ). The use of these band screening
algorithms alone for the interference in the band interval information cannot be
removed and is heavily influenced by interval segmentation. However, the commonly
used algorithms for feature wavenumber point screening are generally the genetic
algorithm (GA)!Y), the ant colony algorithm (ACO)?!Y, and the emerging swarm
intelligence search algorithm binary particle swarm algorithm (BPSO)!!%?2], binary bat
algorithm (BBA)!?*-24 and binary grey wolf optimization algorithm (BGWO)!232¢! in
recent years, and these methods are either more obsolete when used singly complex or
have poor operational efficiency, too much interference information appears in the full
range of spectral wavenumbers to locate the characteristic wavenumbers accurately,
and the calculation of complex operations is too long. As can be seen, single
optimization methods have advantages in terms of computational efficiency, global
searchability, and generality, but each has unavoidable problems. Therefore, this paper
combines the complementary strategies solution and proposes an optimization method
of mid-infrared spectral feature wavenumber screening based on combining feature
band and feature-wavenumber point screening methods.

In this paper, for the quantitative analysis of three oil components in lubricating
base oils, a combined SiPLS-BGWO optimization method was designed and
implemented to perform feature wavenumber screening of spectral full-area feature
data. Firstly, the feature band screening method was used to screen the feature bands
and built a single optimization model. Then, single and combined optimization models

were created for all wavenumbers and the selected feature bands. Finally, the results of



the single and combined optimization models were compared with those obtained using
complete wavenumber data and principal component analysis to compress the feature
data into the model. The differences in wavenumber range and prediction results
between the single optimization model, the combined optimization model, and the base
model were analyzed by example tests to examine the effect of infrared spectral feature
wavenumber screening and the prediction accuracy of the quantitative analysis model
and to verified the effectiveness of the SIPLS-BGWO combined optimization method.
2. Infrared spectroscopy sample extraction
2.1 Lubricant sample preparation

The test sample was formulated with three oil components: mineral oil (Kramer
KN4010), hydrocarbon-based synthetic oil (Mobil PAO40), and polyol ester (NACO
PriEco 3000) to form the lubricant base oil, and this blend was used as the base oil for
formulating customized industrial equipment lubricants, Table 1. Changsha
Zhongcheng Lubricant Co, Ltd., supplied the base oils, and the relevant data, including
physical and chemical properties, were obtained from the product specifications
provided by the manufacturer.

Table 1 Shows the typical physical and chemical properties of the three oils.

/ i Hydrocarbon- .
Property Mmsral oil based synthetic oil Syn_thetlc ester
(KN4010) (PriEco 3000)
(PAOA40)
Viscosity at 40~100 °C (cSt) 40~5.8 40~7.5 45~8
Viscosity index (V1) 95~100 140~150 160~170
Pour point/°C -10~-15 -50~-60 -40~-45
Flash point/°C 200~220 240~260 250~270
Density at 15°C /(g/lcm3F 0.87~0.89 0.82~0.84 0.92~0.95
Thermal oxidation stability Moderate High Very High
Lubricity Moderate Excellent Superior
Biodegradability Low Low to Moderate High
Additive solubility Moderate Good Excellent
Sulfur content/(r/min) 300~500 <10 <5
Evaporation loss (% weight) 2%~5% <1% <0.5%
Copper corrosion (3 h at 100°C) 1b la la
Foaming tendency (Seq. I, mL) 30/0 Oct~00 Oct~00
Water separability (min at 54°C) 30~60 <10 <5

The sample blends were mixed and developed by the previous permutations to form



30 samples, and the sample design scheme is shown in Table 2.

Table 2 Sample Design Solutions

Hydrocarbon-
Factor . . .
NuUmber Mineral 0il/% based synthetic Polyol esters /%
o0ils/%
1 55 25 20
2 50 20 30
3 40 45 15
4 45 30 25
5 45 25 30
6 35 35 30
7 60 20 20
8 35 45 20
9 30 45 25
10 55 30 15
11 45 40 15
12 45 35 20
13 60 25 15
14 50 35 15
15 30 55 15
16 30 40 30
17 40 40 20
18 40 35 25
19 50 25 25
20 55 20 25
21 35 30 35
22 45 20 35
23 30 50 20
24 50 30 20
25 40 30 30
26 50 15 35
27 35 40 25
28 30 35 35
29 35 50 15
30 40 25 35

2.2 Acquisition of raw sample spectral data

A Thermo Scientific Nicolet iS5 Fourier transforms infrared spectrometer was used
as the sample data acquisition instrument with a spectral range of 7 800~350 cm™ and
a KBr window sheet with a transmission wavenumber of 7 800~400 cm™ and a

transmission rate of >92%. Acquisition settings: 16 scans, resolution 16, data interval



1.928 cm’!. Spectral data were collected once for each sample after reloading to
simulate the manual errors generated by different collection personnel during IR
spectrum collection. Four spectral data were collected for each sample, for a total of
120 spectral data.
2.3 Sample set division

Machine learning methods for building infrared spectral analysis models required
sufficient and representative samples, and selecting representative samples required
experienced experts!?’. Still, most people have yet to gain advanced experience, so it
was necessary to select representative samples from the many samples collected to
build training models using relevant sample partitioning methods. The commonly used
methods for sample set partitioning included random partitioning, sample set
partitioning based on joint x-y distances (SPXY)?®!, and Kolmogorov-Smirnov (K-
S)2%). Still, the random selection method could not ensure whether the selected models
met the requirements of the training set. In contrast, K-S partitioning of sample sets
only considered the relationship between sample spectra and ignored the relationship
between the spectra and the corresponding chemical values. The SPXY algorithm fully
considered the relationship between the spectral information of the sample and the
corresponding physicochemical properties. Based on K-S, it calculated the joint
distance between spectral and chemical values. The method could effectively cover the
multidimensional space and significantly avoided the problem of samples with weak
spectral information and low chemical value content needing to be more responsive to
the K-S algorithm. K-S algorithm could effectively improve the model's prediction
performance. Therefore, the SPXY method was used in this study to divided the
collected infrared spectral data into training and prediction sets in a 3:1 ratio 90 samples
in the training set and 30 samples in the prediction set). The statistical results of the
content of each component in the training and prediction sets of lubricant base oils were
shown in Table 3.

Table 3 Statistics on the content of each component in the training and prediction sets of

lubricant base oils



Sample  Average Maximum  Minimum Standard
Sample division

size value /%  value /% value /%  deviation /%
Training set 90 43.055 6 60 30 9.1090
Mineral oil
Test set 30 42.166 7 60 30 9.3480
Hydrocarbon-based  Training set 90 32.666 7 55 15 10.117 3
synthetic oils Test set 30 34.666 7 55 15 10.3335
Training set 90 24.277 8 35 15 7.053 6
Polyol esters
Test set 30 23.166 7 35 15 7.007 8

3 Model construction and evaluation criteria
3.1 Spectral Preprocessing
To avoid the measuring instrument's zero drift and significant differences in data
values, the method, as shown in formula (1), is selected for normalization processing.
The minimum value of all infrared spectrum data is set to 0, and the maximum value is
set to (1).
Yij = ﬁ €Y 1)

Informula (1), x;; was the original spectrum data, X, was the minimum value

of the spectrum data, and x,,,, was the maximum value of the spectrum data.
yi; denotes the normalized spectral value corresponding to x;;, and Y represents the
set of all normalized spectral data.
3.2 Combinatorial optimization of characteristic wavenumber screening schemes
Since the infrared spectra had many feature dimensions*”), Some bands were too
correlated, and the absorption peaks overlapped; the spectral data should have been
filtered by band optimization, which searches for characteristic band regions
corresponding to the relevant substances and eliminated overlapping and redundant
information. Feature wavenumber filtering algorithms could compress spectral data
features, improve computing efficiency, and improve model performance, broadly
divided into feature band filtering algorithms and feature-wavenumber point filtering
algorithms!®!,

The commonly used feature band screening algorithms mainly included SiPLS and

BiPLS, two effective feature band screening methods proposed based on iPLS that were



widely used in fields such as infrared spectral analysis. iPLS divided the spectrum into
k intervals and performed partial least squares regression on each interval separately to
obtain k regression models. The cross-validation method was used to calculate the
calculated root mean square error of each k£ model and compare the error values of each
model. The optimal model was the regression model corresponding to the interval with
the smallest error. In contrast, both BiPLS and SiPLS operated on the divided
subintervals based on iPLS: BiPLS first eliminated the interval with the worst
correlation among the k intervals and built a PLS model for the remaining -/ intervals.
Then, the worst correlation interval among the remaining -/ intervals was eliminated
again, a PLS model was built for the remaining k-2 intervals, and so on, until only one
interval remains. The root-mean-square error value of each PLS model was used as the
evaluation index, where the combination of intervals corresponding to the minimum
value of the root-mean-square error was the optimal interval. SiPLS was a joint interval

of j (2 j <k) intervals randomly selected among the & intervals delineated by iPLS to

build a PLS model, and a total of C ,i PLS models are built, and the combination of j

intervals corresponding to the minimum root mean square error value was the optimal
interval. The computation volume of SiPLS was highly dependent on the values of k&
and j. When the value of k£ was specific, the computation volume would increase
exponentially with the increase of the value of j. Therefore, the value of j should have
been manageable during the computation of SiPLS, which was generally less than 5.
The wavenumber point screening algorithm could be chosen from the group
intelligent search algorithm, which has emerged in recent years, and the algorithm was
mainly used to solve the continuous space function optimization problem at the
beginning of the proposed algorithm. Later, to decode the practical issues of feature
selection and combinatorial optimization in work, different discrete discretization
processing schemes have been proposed one after another to transform the continuous
problem into a 0~1 planning problem, which could thus be used as a method to deal
with large-scale feature engineering preferences, proposed the Binary Gray Wolf

Optimization algorithm (BGWO), which transforms the gray wolf position by updating



the position of the gray wolf using the Sigmoid function as:

B 1, if sigmoid AREA Ry

X, (t+1) = 3 2
0, otherwise
. - 1
sigmoid (a) = 17 610008 )

Where r was a random value between {0,1}; ?1 ,72 and X—3 do the three wolves

give the optimal prey position information; )Zd (t +1) was the binary position of the

wolf updated after ¢ iterations of the search in d-dimensional space. BGWO was tested
to set the relevant parameters; its population number was set to 30, and the maximum
number of iterations was set to 500.

In IR spectral feature wavenumber preference processing, the band screening
algorithms (BiPLS and SiPLS) usually select one or several consecutive intervals.
There was still a large amount of redundant information within the interval. The
screening results of such methods were seriously affected by the interval division, so
the results obtained by using them alone could be more satisfactory. To further remove
the interference information, reduce the data dimensionality, and improve the prediction
ability of the model, based on the above two feature band selection algorithms, the
feature-wavenumber point screening algorithm Binary Swarm Intelligence Algorithm
(BGWO) was introduced to screen the selected spectral data twice and compared and
analyzed the processing effect with Binary Particle Swarm Algorithm (BPSO) and
Binary Bat Algorithm (BBA).

3.3 Quantitative analysis model construction for lubricant base oil composition

The characteristic wavenumber expression regions of the mid-infrared spectra of
mineral oils, hydrocarbon-based synthetic oils, and polyol esters, the three main
components of lubricant base oils, were preferentially selected using a combination of
optimized characteristic wavenumbers, respectively. Using PLS as a basis, the
optimized characteristic wavenumbers of infrared spectra in lubricating oil were input

into the model to construct a quantitative analysis model of lubricating oil base oil



composition, and the overall processing and analysis steps were as follows:

Step 1: By dividing SiPLS and BiPLS into subintervals from 10 to 30, the
prediction performance of the models with different numbers of subintervals was
observed and counted. In particular, for SiPLS, the number of subintervals chosen was
set to 2, 3 and 5 to prevent the model computation from skyrocketing and to find out
the optimal state for dividing the number of different intervals as well as in the case of
its choice of different subintervals so that the model performance was optimal.

Step 2: The preferred performance models of SiPLS and BiPLS for different
compositions (mineral oil, hydrocarbon-based synthetic oil, and polyol ester) were
compared and selected for the next step of secondary screening of characteristic
wavenumbers. Each characteristic wavenumber point of the IR spectrum had only two
states, so the characteristic wavenumber point screening could be said to be the problem
of finding a suitable 0/1 string, the length of which was the number of wavenumber
points of the original spectral data (a total of 1869 wavenumber points), where 0 is not
selected, and one was selected. The normalized raw spectral data were substituted into
BPSO, BBA, and BGWO to optimize the characteristic wavenumber points, and the
training accuracy and the number of incoming wavenumber points of their models were
observed and counted.

Step 3: For the quantitative analysis model of each lubricant component, the
selected feature band screening method, the chosen feature-wavenumber point
screening method, and the combined optimized feature screening method were
compared to analyzing the applicability issues in different situations. We also compared
the full spectral characteristic wavenumber and the traditional PCA compressed
characteristic wavenumber method in the PLS model to investigate the performance

and computational efficiency improvement.



The workflow diagram was shown in Fig 1:

Fig 1. Characteristic wavenumber screening program workflow diagram
BiPLS: Backward Interval Partial Least Squares; SiPLS: Synergy Interval Partial Least Squares;
PLS: Partial Least Squares; BPSO: Binary Particle Swarm Optimization Algorithm; BBA: Binary
Bat Algorithm; BGWO: Binary Grey Wolf Optimization Algorithm
3.4 Evaluation Criteria
In the paper, mean absolute percentage error (MAPE), root mean square error
(RMSE), and coefficient of determination (R?) were used as evaluation criteria for the

comprehensive performance of the model, and the formulae were calculated as follows:

MAPE =100x =Y’ u‘ @
NS Y
13 -
RMSE = [=> (¥~ %)’ 5)
n n n 2
[nzyiyi_zyi yuj
R? — i=1 i=1 =l
(6)

i=1



Where n was the total number of samples, J; was the predicted value of the test
sample, and y; was the actual value. The coefficient of determination R* was between
0 and 1, and the closer it is to 1, the better the model fits and the better the performance.
4 Results and Analysis
4.1 Infrared spectral data pre-processing

The original data were linearly transformed to map the processed data between 0

and 1. The results of normalizing the raw spectral data were shown in Fig 2:

Fig 2. Normalization of raw spectral data: (a) raw spectra; (b) normalized processing
4.2 Comparison of BiPLS and SiPLS screening feature bands
The pre-processed full spectral data range (4 000~400 cm™) was divided into 10 to
30 subintervals, respectively, and the BiPLS characteristic spectral interval screening
model was established to build a quantitative analysis model of lubricant components
with the preferred spectral interval and to make content predictions. The spectral

screening results were shown in Fig 3.



Fig 3. BiPLS screening of characteristic wavenumber distribution of (a) mineral oil, (b)
hydrocarbon-based synthetic oil, and (c) polyol ester
As seen in Table 4, among all the corresponding BiPLS spectral interval screening

models for mineral oil components, when the whole spectrum was divided into 27
subintervals, the best modelling results were selected for the combination of {6, 19,22}
subintervals with a training set RMSECV=1.270 6 and 208 selected wavenumber points;
For hydrocarbon-based synthetic oil components, the best modelling results were
selected for the combination of {14-15} subintervals when the entire spectrum was
divided into 20 subintervals with a training set RMSECV=0.956 and 186 selected
wavenumber points; For the polyol ester component, when the whole spectrum was
split into 26 subintervals, the best modelling result was selected for the combination of
{8, 10, 16 ,17} subintervals with a training set RMSECV= 0.697 8 and 288
wavenumber chosen points.

Table 4 BiPLS Preferred Model Results

Lubricant Total number Selected sub- Cross-validation root- Selected
composition of intervals interval mean-square error wavenumber
points

Mineral oil 27 {6, 19, 22} 1.2706 208




Hydrocarbon-based
20 {14, 15} 0.956 0 186
synthetic oils

Polyol esters 26 {8, 10, 16, 17} 0.697 8 288

The preprocessed full spectral data range (4 000~400 cm™') was divided into 10 to
30 subintervals, and the SiPLS characteristic spectral interval screening model was
established by selecting 2, 3, and 4 joint intervals. The preferred spectral interval was
used to establish the quantitative analysis model of lubricant composition and content

prediction, and the spectral screening results were shown in Fig 4.

Fig 4. SiPLS screening of characteristic wavenumber distribution of (a) mineral oil, (b)
hydrocarbon-based synthetic oil, and (c) polyol ester
As seen in Table 5, among all the corresponding SiPLS spectral interval screening
models, For the mineral oil component, when the whole spectrum was divided into 29
subintervals, the best modelling results were selected for the combination of three joint
subintervals {20, 21, 24} with a training set RMSECV=1.223 and 192 selected
wavenumber points; For hydrocarbon-based synthetic oil components, when the entire
spectrum was divided into 20 subintervals, the best modelling results were selected for
the combination of 2 joint subintervals {14, 15} with a training set RMSECV= 0.956

and 186 selected wavenumber points; For the polyol ester component, when the whole



spectrum was divided into 29 subintervals, three joint subinterval combinations {9, 11,
27} were selected for the best modelling results with a training set RMSECV= 0.686 2
and 194 wavenumber chosen points.

Table 5 SiPLS Preferred Model Results

Lubricant Total number Selected sub- Cross-validation root- Selected
composition of intervals interval mean-square error wavenumber
points
24 {17, 20} 1.2360 156
Mineral oil 29 {20, 21, 24} 1.2230 192
30 {7, 15, 18, 21} 1.2230 249
20 {14, 15} 0.956 0 186
Hydrocarbon-based 27 {17, 19, 22} 09723 207
synthetic oils
30 {18, 19, 21, 22} 0.962 6 248
22 {6, 9} 0.7153 170
Polyol esters 29 {9, 11, 27} 0.686 2 194
26 {8, 10, 13, 16} 0.688 6 288

Among the preferred BiPLS and SiPLS models, SiPLS was better than BiPLS for
screening the characteristic spectra of both mineral oil and polyol ester components,
with lower RMSECV and fewer enrolled wavenumber points. The screening results for
the hydrocarbon-based synthetic oil were consistent with the spectral characteristic
band of 2 746.136~3 104.831 cm!. Therefore, the screening results of the SiPLS model
could be used for the secondary screening of characteristic wavenumbers so that the
model could achieve better prediction and further eliminate the invalid spectral band
points.

4.3 Comparison of binary swarm intelligence algorithms for filtering feature
wavenumber points

Three binary intelligent search algorithms, BPSO, BBA, and BGWO, were used
for feature point screening of the full-spectrum data (a total of 1 869 wavenumber points)
preprocessed in the range of 4 000~400 cm™!, respectively, and the iteration curves of

the three algorithms were shown in Fig 5 below. When searching for the corresponding



spectral characteristic wave numbers for different components (mineral oil,
hydrocarbon-based synthetic oil, and polyol ester) in lubricants, BGWO was
significantly better than the other two algorithms regarding convergence accuracy and
stability. At the same time, BPSO had the poorest search capability and tended to fall

to the local optimum.

Fig 5. Three iteration curves of binary group intelligence algorithms:
(a) Mineral oil; (b) Hydrocarbon-based synthetic oils; (c) Polyol esters
The results of the three search algorithms for the quantitative analysis of the
different components of the lubricant by substituting the selected spectral features
wavenumbers into the PLS model were shown in Table 6:

Table 6 Binary intelligence algorithm model prediction results

Lubricant composition Algorithm RMSE Selected wavenumber
points

BPSO 1.366 6 919

Mineral oil BBA 1.187 4 881

BGWO 0.7332 314

BPSO 1.226 3 923

Hydrocarbon-based BBA 1.038 2 879
synthetic oils

BGWO 0.703 6 308

BPSO 0.7348 884

Polyol esters BBA 0.686 8 893

BGWO 0.5791 346

Table 6 showed that BGWO has a more outstanding search capability, eliminating
more invalid feature information than the remaining two methods. The RMSE

comparison between BPSO, BBA, and BGWO for different lubricant compositions



showed that BGWO consistently outperforms the others across all lubricant types. For
Mineral oil, BGWO achieved the lowest RMSE (0.733 2) compared to BPSO (1.366 6)
and BBA (1.1874), with similar trends observed for Hydrocarbon-based synthetic oils
(BGWO: 0.703 6, BPSO: 1.226 3, BBA: 1.038 2) and Polyol esters (BGWO: 0.579 1,
BPSO: 0.734 8, BBA: 0.686 8). This indicated that BGWO was the most effective for
reducing prediction errors, regardless of the lubricant composition were shown in Fig

6.

Fig 6. Evaluate and compare RMSE (Root Mean Square Error) values for various
algorithms and lubricant types.

BPSO: Binary Particle Swarm Optimization Algorithm; BBA: Binary Bat Algorithm;
BGWO: Binary Grey Wolf Optimization Algorithm

The number of selected wavenumber points was below 350, its spectral feature
wavenumber distribution was shown in Fig 7. BGWO's prediction was better for
quantitative analysis of all three components. BGWO was chosen as a secondary
screening method for feature wavenumber finding in the subsequent combination

optimization.
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Fig 7. BGWO screening of characteristic wavenumber distribution of (a) mineral oil, (b)
hydrocarbon-based synthetic oil, and (c) polyol ester

4.4 Combinatorial optimization screening of characteristic wavenumbers

A mixture of interval band screening and wavenumber point screening of the
characteristic wavenumbers of infrared spectra was used to substitute the pre-processed
raw spectral data for dimensional reduction and compression. Then, a PLS content
prediction model was established. SIPLS-BGWO was used for the characteristic
wavenumber screening for the three lubricant components to examine the prediction
effect for subsequent computational analysis. As seen in Table 7, the predicted results
of SiPLS-BGWO performed well, and the selected spectral features were more obvious
in the wavenumber. The use of the SiPLS-BGWO secondary feature wavenumber
screening method had improved to varying degrees over the use of a single process,

eliminating more invalid feature information and creating a more accurate and effective

model.
Table 7 Combinatorial optimization model prediction results
Lubricant composition Screening Method RMSE Selected wavenumber
points
Mineral oil SiPLS-BGWO 0.706 9 39

Hydrocarbon-based SiPLS-BGWO 0.740 8 30




synthetic oils

Polyol esters SiPLS-BGWO 0.654 1 38

The screening of feature wavenumbers using feature compression algorithms such
as SiPLS was based on interval division selection, and there was still some interference
information selected in the band interval to eliminate redundant information further and
reduce the data dimensionality. Based on the above feature band selection algorithm,
the selected spectral band data were screened twice by using BGWO, and the
distribution of spectral feature wavenumbers was obtained as in Figure 8, 20.3% of the
original feature wavenumbers for mineral oil, 16.1% of the original feature

wavenumbers for PAO, and 19.6% of the original feature wavenumbers for mineral oil.

Fig 8. SIPLS-BGWO screening of characteristic wavenumber distribution of (a) mineral oil,
(b) hydrocarbon-based synthetic oil, and (c) polyol ester
As a result, the secondary feature wavenumber screening using combinatorial
optimization could be used to select the features needed for the model more quickly
and effectively and compress the feature dimension. Further analysis of Fig 8, and based
on the results of past physical and chemical methods of testing, known aromatic ring C
—H stretching vibrations at 3 080 cm™ and —CHs and — CHa stretching vibrations at
2 924~2 854 cm! for mineral oils; —CHs and — CHa stretching vibrations at 2 924~2



854 cm™! for synthetic oil-based; The polyol ester absorbed the aromatic ring C=0

stretching vibration at 1 731 cm™ and the —CH3s with —CH2 deformation vibration at

1 465 cm™!. These vibration points are compared with the characteristic wavenumber

points in the shaded part of the figure, and a good correspondence could be found. The

selected spectral characteristic wavenumber points could reflect the material

information of lubricant composition more realistically.

4.5 Analysis of model test results

Using the preferred method model, the SiPLS preferred band and BGWO preferred

wavenumber points, and SIPLO-BGWO combined preferred wavenumber points were

compared with the full spectral characteristic wavenumbers. The traditional principal

component analysis (PCA) compressed characteristic wavenumbers by substituting

them into the PLS model. The calculation results were shown in Table 8 below.

Table 8 Comparison of model prediction results

Lubricant Screening MAPE RMSE R? Selected
composition Method wavenumber
points
All wavenumbers 3.72% 1.7933 0.965 6 1869
PCA 5.24% 2.8856 0.916 0 -
Mineral oil SiPLS 2.23% 1.128 3 0.986 1 192
BGWO 1.42% 0.733 2 0.993 8 314
SiPLS-BGWO 1.40% 0.706 9 0.994 3 39
All wavenumbers 4.78% 1.836 6 0.9739 1869
PCA 7.09% 2.6935 0.939 8 -
Hydrocarbon-based SiPLS 2.34% 0.9868  0.9906 186
synthetic oils
BGWO 1.79% 0.703 6 0.995 3 308
SiPLS-BGWO 1.89% 0.7408 0.994 8 30
All wavenumbers 3.47% 0.9215 0.9823 1869
PCA 3.42% 0.9753 0.980 6 -
Polyol esters SiPLS 3.11% 0.840 4 0.9857 194
BGWO 2.02% 0.5791 0.9935 346




SiPLS-BGWO 2.32% 0.654 2 0.9919 38

Combining the results of all tests, it could be seen that the data feature
dimensionality reduction method using PCA does not improve the model's performance
but significantly reduced the model's prediction accuracy. This was because although
the use of the PCA algorithm greatly reduces the data dimensionality and improves the
model training speed, it also caused a serious loss of information in the original spectral
data, which did not better reflect the effective features of the model input. SiPLS can
quickly find the feature bands reflecting the corresponding lubricant components and
built a relatively well-performing model with fewer inputs. Still, there is a significant
difference in various prediction accuracy metrics compared to the model built using
BGWO screening features alone. However, the single use of BGWO also has many
problems. Firstly, the model training time was long, and the computational load was
large; furthermore, the optimized feature wavenumber still contains a lot of irrelevant
information, which could not better identify the wave peaks corresponding to the
lubricant components on the spectrogram and reflect the correspondence between the
spectrum and the substance. These problems could be avoided using the combined Si-
BGWO optimization method, which could filter spectral features faster and input more
streamlined and effective spectral wavenumbers. However, in the quantitative analysis
of some components, the prediction accuracy was slightly different in some indexes
compared to the single use of the BGWO method. It was foreseen that the potential of
the combinatorial optimization method will be exploited to a greater extent if infrared
spectral data with larger data feature sizes were input into the model.

The comparison of different screening methods (All wavenumbers, PCA, SiPLS,
BGWO, and SiPLS-BGWO) across three lubricant compositions (Mineral oil,
Hydrocarbon-based synthetic oils, and Polyol esters) showed that the SIPLS-BGWO
method consistently achieved the best performance. It had the lowest MAPE (1.40%
for Mineral oil, 1.89% for Hydrocarbon-based oils, and 2.32% for Polyol esters), the
lowest RMSE (0.706 9, 0.740 8, and 0.654 2, respectively), and the highest R? values

(0.994 3, 0.994 8, and 0.991 9), outperforming the other methods in terms of accuracy



and prediction efficiency were shown in Fig 9.

Fig 9. Comparing the screening methods' performance for various lubricant compositions. mean
absolute percentage error (MAPE), root mean square error (RMSE), and coefficient of
determination (R2).

Thus, for the quantitative analysis of each lubricant component, the SIPLS-BGWO
combination optimization method was chosen to compress the features and find better
spectral wavenumber points as input to build the model. The predicted results for each
component (mineral oil, hydrocarbon-based synthetic oil, and polyol ester) were shown

in Fig 10.

Fig 10. SiPLS-BGWO model prediction results:
(a) Mineral oil; (b) Hydrocarbon-based synthetic oils; (c) Polyol esters

Combining Figure 8 and the above table, it could be seen that the infrared spectral



wavenumber feature point input model optimized and filtered by the SiPLS-BGWO
combination had significantly improved the error indicators for the content prediction
of mineral oil, hydrocarbon-based synthetic oil, and polyol ester, with the mean relative
percentage error (MAPE) all below 2.5%. The root mean square error (RMSE) was
reduced by up to 60.58% compared with all spectral wavenumbers. The coefficients of
determination, R2, were above 99%. The resulting combined and optimized
quantitative analysis model of lubricant composition could quickly find the
corresponding spectral bands of the relevant components, which could accomplish the
task of content prediction.

5 Conclusion

In this paper, through the problem of rapid and accurate analysis of the content of
each component in the infrared spectral test data of lubricating oil, the combination of
the interval band screening method (SiPLS) and binary characteristic wavenumber
point screening method (BGWO) was proposed to optimize the spectral characteristic
wavenumber and the following conclusions were obtained through modelling analysis:

a. The interval band screening method could quickly locate the corresponding
spectral bands of the constituent substances and massively reduce the input amount of
feature wavenumbers for the model, in which SiPLS could optimize the feature spectra
more effectively than BiPLS, with fewer selected feature wavenumber points and more
obvious model improvement.

b. Among the three binary group intelligent search algorithms, BGWO had high
and stable iteration accuracy and better optimization capability than BBA and BPSO,
which tended to converge prematurely with suboptimal solutions. The SiPLS-BGWO
approach offered a powerful and efficient technique for quantitatively analyzing
lubricant composition. It reduced computational complexity by up to 60.58% and
achieved prediction accuracies with R? values exceeding 99%.

c. The combined SiPLS-BGWO optimization method proved to be an efficient and
powerful technique for quantitative analysis of lubricant composition. By integrating
the strengths of both SiPLS and BGWO, the method significantly improved predictive

accuracy, as seen with the reduction in RMSE for predicting mineral oil from 1.1283 to



0.7069. Additionally, the number of selected wavenumber points was reduced from 192
to 39, enhancing model simplicity and efficiency. These improvements demonstrate the
capability of the SIPLS-BGWO method to optimize feature selection effectively and

deliver accuracy for complex spectral data analysis.
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