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基于组合优化特征波长的润滑油基础油成

分定量分析方法研究 
夏延秋*,NAY MINAUNG，王裕兴,冯欣 

(华北电力大学 能源动力与机械工程学院，北京 102206) 

摘 要：针对润滑油基础油成分的定量分析，选取矿物油(KN4010)、碳氢基合成油(PAO40)和合成酯(PriEco 

3000)这 3 种油品成分作为定量分析对象，采集不同配比配制的润滑油基础油样品的中红外光谱数据，采用

SiPLS-BGWO 组合优化方法在光谱全范围内筛选特征波长，剔除大量冗余无效信息，降低搜索空间维数。

试验结果表明：对于矿物油、碳氢基合成油和多元醇酯的含量预测，组合优化模型的误差指标明显改善，

与采用所有光谱波长相比，均方根误差(RMSE)降低幅度最大可达 60.58%，拟合指标的 R2 值均高于 99%。

此外，SiPLS-BGWO 方法将特征波长数量减少至 40 个以下，显著降低了运算负担，有效提高了多物质组分

定量分析模型的准确性和适用性。 

关键词：润滑油基础油; 中红外光谱; 特征波长筛选; 区间带筛查; 组合优化模型 
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Quantitative Analysis Method of Lubricant Base Oil Composition 

Based on Combined Optimized Characteristic Wavenumber 

XIA Yanqiu, NAY MINAUNG, WANG Yuxing, FENG Xin  

(School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206) 

Abstract: For the quantitative analysis of lube oil base oil components, three oil 

components, mineral oil (KN4010), hydrocarbon-based synthetic oil (PAO40), and 

synthetic ester (PriEco 3000) were selected as quantitative analysis objects, and then 

the mid-infrared spectral data of lube oil base oil samples formulated in different ratios 

were collected. The synergy interval partial least squares-binary grey wolf optimization 

algorithm (SiPLS-BGWO) combination optimization method was used to screen the 

characteristic wavenumbers in the full range to eliminate redundant invalid information 

and reduce the search space dimension. By optimizing the selection of characteristic 

wavenumbers, the SiPLS-BGWO approach not only enhanced the prediction accuracy 
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but also demonstrated its ability to address challenges associated with overlapping 

spectral features in complex mixtures. The test results showed that the combined 

optimization model's error indexes were significantly improved for the content 

prediction of mineral oil, hydrocarbon-based synthetic oil, and polyol ester. The RMSE 

(root mean square error) was reduced by up to 60.58% compared to using all spectral 

wavenumbers, and the fit indexes' R2 values were higher than 99%. The significant 

reduction in RMSE underscored the method's capability to identify and eliminate 

irrelevant or noisy spectral information, ensuring that the predictive model focused only 

on relevant features. In addition, the SiPLS-BGWO method had reduced the number of 

characteristic wavenumbers to less than 40, significantly reducing the operational 

burden and effectively improving the accuracy and applicability of the quantitative 

analysis model for multi-matter components. The ability to reduce the number of 

characteristic wavenumbers to below 40 demonstrated the algorithm's efficiency in 

dimensionality reduction while retaining essential predictive information. The results 

affirmed that the SiPLS-BGWO model was a powerful tool for predictive modeling, 

providing a balance between accuracy and efficiency in the quantitative analysis of 

multi-component systems. And a novel framework for bridging the gap between 

spectral data complexity and actionable chemical insights, setting a precedent for future 

developments in the field. 

Key words: lubricant base oil; mid-infrared spectroscopy; feature wavenumber 

screening; interval band screening; combinatorial optimization model 

1. Introduction 

As we all know, lubricants are composed of base oils and additives, and there are 

three main types of base oils: including mineral-based oils, synthetic-based oils, and 

vegetable-based oils. Mineral-based oils are widely used[1], with more than 90% of the 

usage, but some applications must use synthetic or vegetable oils in combination with 

mineral oils. Usually, the base oil determines the appearance, density, viscosity, flash 

point, freezing point, pour point, moisture, mechanical impurities, residual carbon, etc. 

Of course, some additives can also improve and enhance the above properties. Although 

lubricant base oil accounts for 95%~99% of the total weight of oil products, the class 



of oil products is diverse and complex. The lubricant product's performance and 

appearance cannot identify the lubricant class nor determine its composition content[2]. 

The standard measure to identify and analyze the content of lubricant base oils is to use 

traditional physical and chemical tests and other methods to determine and analyze. 

Still, it is relatively complex to identify the types of mixed base oils, especially when 

determining the content of base oil components, which is more complicated. The 

samples' mid-infrared spectral information was obtained using Fourier transform 

infrared radiation (FT-IR) and processed using first and second derivatives, 

complementing methods such as Raman spectroscopy, performance testing, and gas 

chromatography[3]. These methods are mostly affected by human factors such as high 

time and labour costs, and the results have significant errors[4-6], so an accurate and 

effective oil analysis technique is needed. Mid-infrared spectroscopy has the advantage 

of being non-destructive and rapid as well as large and low-cost, so it is widely used 

for both qualitative and quantitative analysis of the composition of substances [7-8]. 

Machine-learning data analysis processing methods are required for determination and 

analysis to find the relevant characteristic peaks of infrared spectra quickly, eliminate 

interfering factors, and complete the task of substance identification and content 

prediction. However, most studies in lubricant analysis have primarily focused on oil 

identification tests[9]. Only a limited number of studies have been conducted on the 

identification and content analysis of base oils within the latest categories of oils[10]. 

Lubricant composition content has an essential impact on its performance, and 

traditional lubricant development has been carried out mainly using repeated extensive 

design experiments and performance testing[11]. Only by choosing the right proportional 

content of blended lubricants can they meet the requirements, so quantitative analysis 

and control of the constituent components in the oil development process is required. 

In this paper, we start with infrared spectroscopy and combine the machine learning 

method of intelligent optimization algorithm to construct a quantitative analysis model 

of the lubricant composition. The commonly used algorithm for creating predictive 

models is partial least squares (PLS)[12-13], a classical linear modelling method that can 

overcome the covariance problem and reduce noise interference, and the analysis of 



spectral data is widely used. For mid-infrared spectral-type data with many features, the 

training process will occupy a lot of memory, prolong the computing time, and seriously 

degrade the prediction quality[14]. Therefore, screening out redundant information and 

reducing the search dimension is necessary, so filtering the characteristic wavenumbers 

of mid-infrared spectra is essential. Spectral feature wavenumber screening methods 

are divided into feature band screening algorithms and feature point screening 

algorithms. The commonly used feature band screening algorithms include interval 

partial least squares (iPLS)[15-17], Synergy interval partial least squares (SiPLS)[18], and 

backward interval partial least squares (BiPLS)[15, 19]. The use of these band screening 

algorithms alone for the interference in the band interval information cannot be 

removed and is heavily influenced by interval segmentation. However, the commonly 

used algorithms for feature wavenumber point screening are generally the genetic 

algorithm (GA)[20], the ant colony algorithm (ACO)[21], and the emerging swarm 

intelligence search algorithm binary particle swarm algorithm (BPSO)[10,22], binary bat 

algorithm (BBA)[23-24] and binary grey wolf optimization algorithm (BGWO)[25-26] in 

recent years, and these methods are either more obsolete when used singly complex or 

have poor operational efficiency, too much interference information appears in the full 

range of spectral wavenumbers to locate the characteristic wavenumbers accurately, 

and the calculation of complex operations is too long. As can be seen, single 

optimization methods have advantages in terms of computational efficiency, global 

searchability, and generality, but each has unavoidable problems. Therefore, this paper 

combines the complementary strategies solution and proposes an optimization method 

of mid-infrared spectral feature wavenumber screening based on combining feature 

band and feature-wavenumber point screening methods. 

In this paper, for the quantitative analysis of three oil components in lubricating 

base oils, a combined SiPLS-BGWO optimization method was designed and 

implemented to perform feature wavenumber screening of spectral full-area feature 

data. Firstly, the feature band screening method was used to screen the feature bands 

and built a single optimization model. Then, single and combined optimization models 

were created for all wavenumbers and the selected feature bands. Finally, the results of 



the single and combined optimization models were compared with those obtained using 

complete wavenumber data and principal component analysis to compress the feature 

data into the model. The differences in wavenumber range and prediction results 

between the single optimization model, the combined optimization model, and the base 

model were analyzed by example tests to examine the effect of infrared spectral feature 

wavenumber screening and the prediction accuracy of the quantitative analysis model 

and to verified the effectiveness of the SiPLS-BGWO combined optimization method. 

2. Infrared spectroscopy sample extraction 

2.1 Lubricant sample preparation 

The test sample was formulated with three oil components: mineral oil (Kramer 

KN4010), hydrocarbon-based synthetic oil (Mobil PAO40), and polyol ester (NACO 

PriEco 3000) to form the lubricant base oil, and this blend was used as the base oil for 

formulating customized industrial equipment lubricants, Table 1. Changsha 

Zhongcheng Lubricant Co, Ltd., supplied the base oils, and the relevant data, including 

physical and chemical properties, were obtained from the product specifications 

provided by the manufacturer. 

Table 1 Shows the typical physical and chemical properties of the three oils.  

Property 
Mineral oil 

(KN4010) 

Hydrocarbon-

based synthetic oil 

(PAO40) 

Synthetic ester 

(PriEco 3000) 

Viscosity at 40~100 ℃ (cSt) 40~5.8 40~7.5 45~8 

Viscosity index (VI) 95~100 140~150 160~170 

Pour point/℃ -10~-15 -50~-60 -40~-45 

Flash point/℃ 200~220 240~260 250~270 

Density at 15℃ /(g/cm³) 0.87~0.89 0.82~0.84 0.92~0.95 

Thermal oxidation stability Moderate High Very High 

Lubricity Moderate Excellent Superior 

Biodegradability Low Low to Moderate High 

Additive solubility Moderate Good Excellent 

Sulfur content/(r/min) 300~500 <10 <5 

Evaporation loss (% weight) 2%~5% <1% <0.5% 

Copper corrosion (3 h at 100℃) 1b 1a 1a 

Foaming tendency (Seq. I, mL) 30/0 Oct~00 Oct~00 

Water separability (min at 54℃) 30~60 < 10 < 5 

The sample blends were mixed and developed by the previous permutations to form 



30 samples, and the sample design scheme is shown in Table 2. 

Table 2 Sample Design Solutions 

      Factor 

Number 
Mineral oil/% 

Hydrocarbon-

based synthetic 

oils/% 

Polyol esters /% 

1 55 25 20 

2 50 20 30 

3 40 45 15 

4 45 30 25 

5 45 25 30 

6 35 35 30 

7 60 20 20 

8 35 45 20 

9 30 45 25 

10 55 30 15 

11 45 40 15 

12 45 35 20 

13 60 25 15 

14 50 35 15 

15 30 55 15 

16 30 40 30 

17 40 40 20 

18 40 35 25 

19 50 25 25 

20 55 20 25 

21 35 30 35 

22 45 20 35 

23 30 50 20 

24 50 30 20 

25 40 30 30 

26 50 15 35 

27 35 40 25 

28 30 35 35 

29 35 50 15 

30 40 25 35 

2.2 Acquisition of raw sample spectral data 

 A Thermo Scientific Nicolet iS5 Fourier transforms infrared spectrometer was used 

as the sample data acquisition instrument with a spectral range of 7 800~350 cm-1 and 

a KBr window sheet with a transmission wavenumber of 7 800~400 cm-1 and a 

transmission rate of >92%. Acquisition settings: 16 scans, resolution 16, data interval 



1.928 cm-1. Spectral data were collected once for each sample after reloading to 

simulate the manual errors generated by different collection personnel during IR 

spectrum collection. Four spectral data were collected for each sample, for a total of 

120 spectral data. 

2.3 Sample set division 

 Machine learning methods for building infrared spectral analysis models required 

sufficient and representative samples, and selecting representative samples required 

experienced experts[27]. Still, most people have yet to gain advanced experience, so it 

was necessary to select representative samples from the many samples collected to 

build training models using relevant sample partitioning methods. The commonly used 

methods for sample set partitioning included random partitioning, sample set 

partitioning based on joint x-y distances (SPXY)[28], and Kolmogorov-Smirnov (K-

S)[29]. Still, the random selection method could not ensure whether the selected models 

met the requirements of the training set. In contrast, K-S partitioning of sample sets 

only considered the relationship between sample spectra and ignored the relationship 

between the spectra and the corresponding chemical values. The SPXY algorithm fully 

considered the relationship between the spectral information of the sample and the 

corresponding physicochemical properties. Based on K-S, it calculated the joint 

distance between spectral and chemical values. The method could effectively cover the 

multidimensional space and significantly avoided the problem of samples with weak 

spectral information and low chemical value content needing to be more responsive to 

the K-S algorithm. K-S algorithm could effectively improve the model's prediction 

performance. Therefore, the SPXY method was used in this study to divided the 

collected infrared spectral data into training and prediction sets in a 3:1 ratio 90 samples 

in the training set and 30 samples in the prediction set). The statistical results of the 

content of each component in the training and prediction sets of lubricant base oils were 

shown in Table 3. 

Table 3 Statistics on the content of each component in the training and prediction sets of 

lubricant base oils 



Sample division 

Sample 

size  

Average 

value /% 

Maximum 

value /% 

Minimum 

value /% 

Standard 

deviation /% 

Mineral oil 

Training set 90 43.055 6 60 30 9.109 0 

Test set 30 42.166 7 60 30 9.348 0 

Hydrocarbon-based 

synthetic oils 

Training set 90 32.666 7 55 15 10.117 3 

Test set 30 34.666 7 55 15 10.333 5 

Polyol esters 

Training set 90 24.277 8 35 15 7.053 6 

Test set 30 23.166 7 35 15 7.007 8 

3 Model construction and evaluation criteria 

3.1 Spectral Preprocessing 

To avoid the measuring instrument's zero drift and significant differences in data 

values, the method, as shown in formula (1), is selected for normalization processing. 

The minimum value of all infrared spectrum data is set to 0, and the maximum value is 

set to (1). 

𝒚𝒊𝒋 =
𝒙𝒊𝒋−𝒙𝒎𝒊𝒏

𝒙𝒎𝒂𝒙−𝒙𝒎𝒊𝒏
∈ 𝑌                         (1) 

In formula (1), 𝒙𝒊𝒋 was the original spectrum data, 𝒙𝒎𝒊𝒏 was the minimum value 

of the spectrum data, and 𝒙𝒎𝒂𝒙  was the maximum value of the spectrum data. 

𝒚𝒊𝒋 denotes the normalized spectral value corresponding to 𝒙𝒊𝒋, and Y represents the 

set of all normalized spectral data. 

3.2 Combinatorial optimization of characteristic wavenumber screening schemes 

 Since the infrared spectra had many feature dimensions[30], Some bands were too 

correlated, and the absorption peaks overlapped; the spectral data should have been 

filtered by band optimization, which searches for characteristic band regions 

corresponding to the relevant substances and eliminated overlapping and redundant 

information. Feature wavenumber filtering algorithms could compress spectral data 

features, improve computing efficiency, and improve model performance, broadly 

divided into feature band filtering algorithms and feature-wavenumber point filtering 

algorithms[31]. 

 The commonly used feature band screening algorithms mainly included SiPLS and 

BiPLS, two effective feature band screening methods proposed based on iPLS that were 



widely used in fields such as infrared spectral analysis. iPLS divided the spectrum into 

k intervals and performed partial least squares regression on each interval separately to 

obtain k regression models. The cross-validation method was used to calculate the 

calculated root mean square error of each k model and compare the error values of each 

model. The optimal model was the regression model corresponding to the interval with 

the smallest error. In contrast, both BiPLS and SiPLS operated on the divided 

subintervals based on iPLS: BiPLS first eliminated the interval with the worst 

correlation among the k intervals and built a PLS model for the remaining k-1 intervals. 

Then, the worst correlation interval among the remaining k-1 intervals was eliminated 

again, a PLS model was built for the remaining k-2 intervals, and so on, until only one 

interval remains. The root-mean-square error value of each PLS model was used as the 

evaluation index, where the combination of intervals corresponding to the minimum 

value of the root-mean-square error was the optimal interval. SiPLS was a joint interval 

of j (2≤j≤k) intervals randomly selected among the k intervals delineated by iPLS to 

build a PLS model, and a total of 𝐶𝑘
𝑗
 PLS models are built, and the combination of j 

intervals corresponding to the minimum root mean square error value was the optimal 

interval. The computation volume of SiPLS was highly dependent on the values of k 

and j. When the value of k was specific, the computation volume would increase 

exponentially with the increase of the value of j. Therefore, the value of j should have 

been manageable during the computation of SiPLS, which was generally less than 5. 

 The wavenumber point screening algorithm could be chosen from the group 

intelligent search algorithm, which has emerged in recent years, and the algorithm was 

mainly used to solve the continuous space function optimization problem at the 

beginning of the proposed algorithm. Later, to decode the practical issues of feature 

selection and combinatorial optimization in work, different discrete discretization 

processing schemes have been proposed one after another to transform the continuous 

problem into a 0~1 planning problem, which could thus be used as a method to deal 

with large-scale feature engineering preferences, proposed the Binary Gray Wolf 

Optimization algorithm (BGWO), which transforms the gray wolf position by updating 



the position of the gray wolf using the Sigmoid function as: 
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Where r was a random value between {0,1}; 
1X ,

2X  and 
3X  do the three wolves 

give the optimal prey position information;  1dX t   was the binary position of the 

wolf updated after t iterations of the search in d-dimensional space. BGWO was tested 

to set the relevant parameters; its population number was set to 30, and the maximum 

number of iterations was set to 500. 

 In IR spectral feature wavenumber preference processing, the band screening 

algorithms (BiPLS and SiPLS) usually select one or several consecutive intervals. 

There was still a large amount of redundant information within the interval. The 

screening results of such methods were seriously affected by the interval division, so 

the results obtained by using them alone could be more satisfactory. To further remove 

the interference information, reduce the data dimensionality, and improve the prediction 

ability of the model, based on the above two feature band selection algorithms, the 

feature-wavenumber point screening algorithm Binary Swarm Intelligence Algorithm 

(BGWO) was introduced to screen the selected spectral data twice and compared and 

analyzed the processing effect with Binary Particle Swarm Algorithm (BPSO) and 

Binary Bat Algorithm (BBA). 

3.3 Quantitative analysis model construction for lubricant base oil composition 

The characteristic wavenumber expression regions of the mid-infrared spectra of 

mineral oils, hydrocarbon-based synthetic oils, and polyol esters, the three main 

components of lubricant base oils, were preferentially selected using a combination of 

optimized characteristic wavenumbers, respectively. Using PLS as a basis, the 

optimized characteristic wavenumbers of infrared spectra in lubricating oil were input 

into the model to construct a quantitative analysis model of lubricating oil base oil 



composition, and the overall processing and analysis steps were as follows： 

Step 1: By dividing SiPLS and BiPLS into subintervals from 10 to 30, the 

prediction performance of the models with different numbers of subintervals was 

observed and counted. In particular, for SiPLS, the number of subintervals chosen was 

set to 2, 3 and 5 to prevent the model computation from skyrocketing and to find out 

the optimal state for dividing the number of different intervals as well as in the case of 

its choice of different subintervals so that the model performance was optimal. 

Step 2: The preferred performance models of SiPLS and BiPLS for different 

compositions (mineral oil, hydrocarbon-based synthetic oil, and polyol ester) were 

compared and selected for the next step of secondary screening of characteristic 

wavenumbers. Each characteristic wavenumber point of the IR spectrum had only two 

states, so the characteristic wavenumber point screening could be said to be the problem 

of finding a suitable 0/1 string, the length of which was the number of wavenumber 

points of the original spectral data (a total of 1869 wavenumber points), where 0 is not 

selected, and one was selected. The normalized raw spectral data were substituted into 

BPSO, BBA, and BGWO to optimize the characteristic wavenumber points, and the 

training accuracy and the number of incoming wavenumber points of their models were 

observed and counted. 

Step 3: For the quantitative analysis model of each lubricant component, the 

selected feature band screening method, the chosen feature-wavenumber point 

screening method, and the combined optimized feature screening method were 

compared to analyzing the applicability issues in different situations. We also compared 

the full spectral characteristic wavenumber and the traditional PCA compressed 

characteristic wavenumber method in the PLS model to investigate the performance 

and computational efficiency improvement. 



The workflow diagram was shown in Fig 1: 

Fig 1. Characteristic wavenumber screening program workflow diagram 

BiPLS: Backward Interval Partial Least Squares; SiPLS: Synergy Interval Partial Least Squares; 

PLS: Partial Least Squares; BPSO: Binary Particle Swarm Optimization Algorithm; BBA: Binary 

Bat Algorithm; BGWO: Binary Grey Wolf Optimization Algorithm 

3.4 Evaluation Criteria 

In the paper, mean absolute percentage error (MAPE), root mean square error 

(RMSE), and coefficient of determination (R2) were used as evaluation criteria for the 

comprehensive performance of the model, and the formulae were calculated as follows: 
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(6) 



Where 𝑛  was the total number of samples, 𝑦̂𝑖  was the predicted value of the test 

sample, and 𝑦𝑖 was the actual value. The coefficient of determination R2 was between 

0 and 1, and the closer it is to 1, the better the model fits and the better the performance. 

4 Results and Analysis 

4.1 Infrared spectral data pre-processing 

 The original data were linearly transformed to map the processed data between 0 

and 1. The results of normalizing the raw spectral data were shown in Fig 2： 

 

Fig 2. Normalization of raw spectral data: (a) raw spectra; (b) normalized processing 

4.2 Comparison of BiPLS and SiPLS screening feature bands 

 The pre-processed full spectral data range (4 000~400 cm-1) was divided into 10 to 

30 subintervals, respectively, and the BiPLS characteristic spectral interval screening 

model was established to build a quantitative analysis model of lubricant components 

with the preferred spectral interval and to make content predictions. The spectral 

screening results were shown in Fig 3. 



 

Fig 3. BiPLS screening of characteristic wavenumber distribution of (a) mineral oil, (b) 

hydrocarbon-based synthetic oil, and (c) polyol ester

As seen in Table 4, among all the corresponding BiPLS spectral interval screening 

models for mineral oil components, when the whole spectrum was divided into 27 

subintervals, the best modelling results were selected for the combination of {6, 19, 22} 

subintervals with a training set RMSECV=1.270 6 and 208 selected wavenumber points; 

For hydrocarbon-based synthetic oil components, the best modelling results were 

selected for the combination of {14-15} subintervals when the entire spectrum was 

divided into 20 subintervals with a training set RMSECV=0.956 and 186 selected 

wavenumber points; For the polyol ester component, when the whole spectrum was 

split into 26 subintervals, the best modelling result was selected for the combination of 

{8, 10, 16 ,17} subintervals with a training set RMSECV= 0.697 8 and 288 

wavenumber chosen points. 

Table 4 BiPLS Preferred Model Results 

Lubricant 

composition 

Total number 

of intervals  

Selected sub-

interval 

Cross-validation root-

mean-square error 

Selected 

wavenumber 

points 

Mineral oil 27 {6, 19, 22} 1.270 6 208 



Hydrocarbon-based 

synthetic oils 

20 {14, 15} 0.956 0 186 

Polyol esters 26 {8, 10, 16, 17} 0.697 8 288 

 The preprocessed full spectral data range (4 000~400 cm-1) was divided into 10 to 

30 subintervals, and the SiPLS characteristic spectral interval screening model was 

established by selecting 2, 3, and 4 joint intervals. The preferred spectral interval was 

used to establish the quantitative analysis model of lubricant composition and content 

prediction, and the spectral screening results were shown in Fig 4. 

 

Fig 4. SiPLS screening of characteristic wavenumber distribution of (a) mineral oil, (b) 

hydrocarbon-based synthetic oil, and (c) polyol ester 

 As seen in Table 5, among all the corresponding SiPLS spectral interval screening 

models, For the mineral oil component, when the whole spectrum was divided into 29 

subintervals, the best modelling results were selected for the combination of three joint 

subintervals {20, 21, 24} with a training set RMSECV=1.223 and 192 selected 

wavenumber points; For hydrocarbon-based synthetic oil components, when the entire 

spectrum was divided into 20 subintervals, the best modelling results were selected for 

the combination of 2 joint subintervals {14, 15} with a training set RMSECV= 0.956 

and 186 selected wavenumber points; For the polyol ester component, when the whole 



spectrum was divided into 29 subintervals, three joint subinterval combinations {9, 11, 

27} were selected for the best modelling results with a training set RMSECV= 0.686 2 

and 194 wavenumber chosen points. 

Table 5 SiPLS Preferred Model Results 

Lubricant 

composition 

Total number 

of intervals  

Selected sub-

interval 

Cross-validation root-

mean-square error 

Selected 

wavenumber 

points 

 

Mineral oil 

24 {17, 20} 1.236 0 156 

29 {20, 21, 24} 1.223 0 192 

30 {7, 15, 18, 21} 1.223 0 249 

 

Hydrocarbon-based 

synthetic oils 

20 {14, 15} 0.956 0 186 

27 {17, 19, 22} 0.972 3 207 

30 {18, 19, 21, 22} 0.962 6 248 

 

Polyol esters 

22 {6, 9} 0.715 3 170 

29 {9, 11, 27} 0.686 2 194 

26 {8, 10, 13, 16} 0.688 6 288 

 Among the preferred BiPLS and SiPLS models, SiPLS was better than BiPLS for 

screening the characteristic spectra of both mineral oil and polyol ester components, 

with lower RMSECV and fewer enrolled wavenumber points. The screening results for 

the hydrocarbon-based synthetic oil were consistent with the spectral characteristic 

band of 2 746.136~3 104.831 cm-1. Therefore, the screening results of the SiPLS model 

could be used for the secondary screening of characteristic wavenumbers so that the 

model could achieve better prediction and further eliminate the invalid spectral band 

points. 

4.3 Comparison of binary swarm intelligence algorithms for filtering feature 

wavenumber points 

 Three binary intelligent search algorithms, BPSO, BBA, and BGWO, were used 

for feature point screening of the full-spectrum data (a total of 1 869 wavenumber points) 

preprocessed in the range of 4 000~400 cm-1, respectively, and the iteration curves of 

the three algorithms were shown in Fig 5 below. When searching for the corresponding 



spectral characteristic wave numbers for different components (mineral oil, 

hydrocarbon-based synthetic oil, and polyol ester) in lubricants, BGWO was 

significantly better than the other two algorithms regarding convergence accuracy and 

stability. At the same time, BPSO had the poorest search capability and tended to fall 

to the local optimum. 

   

Fig 5. Three iteration curves of binary group intelligence algorithms: 

(a) Mineral oil; (b) Hydrocarbon-based synthetic oils; (c) Polyol esters 

 The results of the three search algorithms for the quantitative analysis of the 

different components of the lubricant by substituting the selected spectral features 

wavenumbers into the PLS model were shown in Table 6: 

Table 6 Binary intelligence algorithm model prediction results 

Lubricant composition Algorithm RMSE Selected wavenumber 

points 

 

Mineral oil 

BPSO 1.366 6 919 

BBA 1.187 4 881 

BGWO 0.733 2 314 

 

Hydrocarbon-based 

synthetic oils 

BPSO 1.226 3 923 

BBA 1.038 2 879 

BGWO 0.703 6 308 

 

Polyol esters 

BPSO 0.734 8 884 

BBA 0.686 8 893 

BGWO 0.579 1 346 

Table 6 showed that BGWO has a more outstanding search capability, eliminating 

more invalid feature information than the remaining two methods. The RMSE 

comparison between BPSO, BBA, and BGWO for different lubricant compositions 



showed that BGWO consistently outperforms the others across all lubricant types. For 

Mineral oil, BGWO achieved the lowest RMSE (0.733 2) compared to BPSO (1.366 6) 

and BBA (1.1874), with similar trends observed for Hydrocarbon-based synthetic oils 

(BGWO: 0.703 6, BPSO: 1.226 3, BBA: 1.038 2) and Polyol esters (BGWO: 0.579 1, 

BPSO: 0.734 8, BBA: 0.686 8). This indicated that BGWO was the most effective for 

reducing prediction errors, regardless of the lubricant composition were shown in Fig 

6. 

  

Fig 6. Evaluate and compare RMSE (Root Mean Square Error) values for various 

algorithms and lubricant types.  

BPSO: Binary Particle Swarm Optimization Algorithm; BBA: Binary Bat Algorithm; 

BGWO: Binary Grey Wolf Optimization Algorithm 

The number of selected wavenumber points was below 350, its spectral feature 

wavenumber distribution was shown in Fig 7. BGWO's prediction was better for 

quantitative analysis of all three components. BGWO was chosen as a secondary 

screening method for feature wavenumber finding in the subsequent combination 

optimization.



 

Fig 7. BGWO screening of characteristic wavenumber distribution of (a) mineral oil, (b) 

hydrocarbon-based synthetic oil, and (c) polyol ester 

4.4 Combinatorial optimization screening of characteristic wavenumbers 

    A mixture of interval band screening and wavenumber point screening of the 

characteristic wavenumbers of infrared spectra was used to substitute the pre-processed 

raw spectral data for dimensional reduction and compression. Then, a PLS content 

prediction model was established. SiPLS-BGWO was used for the characteristic 

wavenumber screening for the three lubricant components to examine the prediction 

effect for subsequent computational analysis. As seen in Table 7, the predicted results 

of SiPLS-BGWO performed well, and the selected spectral features were more obvious 

in the wavenumber. The use of the SiPLS-BGWO secondary feature wavenumber 

screening method had improved to varying degrees over the use of a single process, 

eliminating more invalid feature information and creating a more accurate and effective 

model. 

Table 7 Combinatorial optimization model prediction results 

Lubricant composition Screening Method RMSE Selected wavenumber 

points 

Mineral oil SiPLS-BGWO 0.706 9 39 

Hydrocarbon-based SiPLS-BGWO 0.740 8 30 



synthetic oils 

Polyol esters SiPLS-BGWO 0.654 1 38 

 The screening of feature wavenumbers using feature compression algorithms such 

as SiPLS was based on interval division selection, and there was still some interference 

information selected in the band interval to eliminate redundant information further and 

reduce the data dimensionality. Based on the above feature band selection algorithm, 

the selected spectral band data were screened twice by using BGWO, and the 

distribution of spectral feature wavenumbers was obtained as in Figure 8, 20.3% of the 

original feature wavenumbers for mineral oil, 16.1% of the original feature 

wavenumbers for PAO, and 19.6% of the original feature wavenumbers for mineral oil. 

 

Fig 8. SiPLS-BGWO screening of characteristic wavenumber distribution of (a) mineral oil, 

(b) hydrocarbon-based synthetic oil, and (c) polyol ester 

 As a result, the secondary feature wavenumber screening using combinatorial 

optimization could be used to select the features needed for the model more quickly 

and effectively and compress the feature dimension. Further analysis of Fig 8, and based 

on the results of past physical and chemical methods of testing, known aromatic ring C

－H stretching vibrations at 3 080 cm-1 and －CH3 and －CH2 stretching vibrations at 

2 924~2 854 cm-1 for mineral oils; －CH3 and －CH2 stretching vibrations at 2 924~2 



854 cm-1 for synthetic oil-based; The polyol ester absorbed the aromatic ring C＝O 

stretching vibration at 1 731 cm-1 and the －CH3 with －CH2 deformation vibration at 

1 465 cm-1. These vibration points are compared with the characteristic wavenumber 

points in the shaded part of the figure, and a good correspondence could be found. The 

selected spectral characteristic wavenumber points could reflect the material 

information of lubricant composition more realistically. 

4.5 Analysis of model test results 

 Using the preferred method model, the SiPLS preferred band and BGWO preferred 

wavenumber points, and SiPLO-BGWO combined preferred wavenumber points were 

compared with the full spectral characteristic wavenumbers. The traditional principal 

component analysis (PCA) compressed characteristic wavenumbers by substituting 

them into the PLS model. The calculation results were shown in Table 8 below. 

Table 8 Comparison of model prediction results 

Lubricant 

composition 

Screening 

Method 

MAPE RMSE R2 Selected 

wavenumber 

points 

 

 

Mineral oil 

All wavenumbers 3.72% 1.793 3 0.965 6 1 869 

PCA 5.24% 2.885 6 0.916 0 - 

SiPLS 2.23% 1.128 3 0.986 1 192 

BGWO 1.42% 0.733 2 0.993 8 314 

SiPLS-BGWO 1.40% 0.706 9 0.994 3 39 

 

 

Hydrocarbon-based 

synthetic oils 

All wavenumbers 4.78% 1.836 6 0.973 9 1 869 

PCA 7.09% 2.693 5 0.939 8 - 

SiPLS 2.34% 0.986 8 0.990 6 186 

BGWO 1.79% 0.703 6 0.995 3 308 

SiPLS-BGWO 1.89% 0.740 8 0.994 8 30 

 

 

Polyol esters 

All wavenumbers 3.47% 0.921 5 0.982 3 1 869 

PCA 3.42% 0.975 3 0.980 6 ‒ 

SiPLS 3.11% 0.840 4 0.985 7 194 

BGWO 2.02% 0.579 1 0.993 5 346 



SiPLS-BGWO 2.32% 0.654 2 0.991 9 38 

 Combining the results of all tests, it could be seen that the data feature 

dimensionality reduction method using PCA does not improve the model's performance 

but significantly reduced the model's prediction accuracy. This was because although 

the use of the PCA algorithm greatly reduces the data dimensionality and improves the 

model training speed, it also caused a serious loss of information in the original spectral 

data, which did not better reflect the effective features of the model input. SiPLS can 

quickly find the feature bands reflecting the corresponding lubricant components and 

built a relatively well-performing model with fewer inputs. Still, there is a significant 

difference in various prediction accuracy metrics compared to the model built using 

BGWO screening features alone. However, the single use of BGWO also has many 

problems. Firstly, the model training time was long, and the computational load was 

large; furthermore, the optimized feature wavenumber still contains a lot of irrelevant 

information, which could not better identify the wave peaks corresponding to the 

lubricant components on the spectrogram and reflect the correspondence between the 

spectrum and the substance. These problems could be avoided using the combined Si-

BGWO optimization method, which could filter spectral features faster and input more 

streamlined and effective spectral wavenumbers. However, in the quantitative analysis 

of some components, the prediction accuracy was slightly different in some indexes 

compared to the single use of the BGWO method. It was foreseen that the potential of 

the combinatorial optimization method will be exploited to a greater extent if infrared 

spectral data with larger data feature sizes were input into the model. 

 The comparison of different screening methods (All wavenumbers, PCA, SiPLS, 

BGWO, and SiPLS-BGWO) across three lubricant compositions (Mineral oil, 

Hydrocarbon-based synthetic oils, and Polyol esters) showed that the SiPLS-BGWO 

method consistently achieved the best performance. It had the lowest MAPE (1.40% 

for Mineral oil, 1.89% for Hydrocarbon-based oils, and 2.32% for Polyol esters), the 

lowest RMSE (0.706 9, 0.740 8, and 0.654 2, respectively), and the highest R² values 

(0.994 3, 0.994 8, and 0.991 9), outperforming the other methods in terms of accuracy 



and prediction efficiency were shown in Fig 9. 

 

Fig 9. Comparing the screening methods' performance for various lubricant compositions. mean 

absolute percentage error (MAPE), root mean square error (RMSE), and coefficient of 

determination (R2). 

 Thus, for the quantitative analysis of each lubricant component, the SiPLS-BGWO 

combination optimization method was chosen to compress the features and find better 

spectral wavenumber points as input to build the model. The predicted results for each 

component (mineral oil, hydrocarbon-based synthetic oil, and polyol ester) were shown 

in Fig 10.

   

Fig 10. SiPLS-BGWO model prediction results: 

(a) Mineral oil; (b) Hydrocarbon-based synthetic oils; (c) Polyol esters 

 Combining Figure 8 and the above table, it could be seen that the infrared spectral 



wavenumber feature point input model optimized and filtered by the SiPLS-BGWO 

combination had significantly improved the error indicators for the content prediction 

of mineral oil, hydrocarbon-based synthetic oil, and polyol ester, with the mean relative 

percentage error (MAPE) all below 2.5%. The root mean square error (RMSE) was 

reduced by up to 60.58% compared with all spectral wavenumbers. The coefficients of 

determination, R2, were above 99%. The resulting combined and optimized 

quantitative analysis model of lubricant composition could quickly find the 

corresponding spectral bands of the relevant components, which could accomplish the 

task of content prediction. 

5 Conclusion 

 In this paper, through the problem of rapid and accurate analysis of the content of 

each component in the infrared spectral test data of lubricating oil, the combination of 

the interval band screening method (SiPLS) and binary characteristic wavenumber 

point screening method (BGWO) was proposed to optimize the spectral characteristic 

wavenumber and the following conclusions were obtained through modelling analysis: 

a. The interval band screening method could quickly locate the corresponding 

spectral bands of the constituent substances and massively reduce the input amount of 

feature wavenumbers for the model, in which SiPLS could optimize the feature spectra 

more effectively than BiPLS, with fewer selected feature wavenumber points and more 

obvious model improvement. 

b. Among the three binary group intelligent search algorithms, BGWO had high 

and stable iteration accuracy and better optimization capability than BBA and BPSO, 

which tended to converge prematurely with suboptimal solutions. The SiPLS-BGWO 

approach offered a powerful and efficient technique for quantitatively analyzing 

lubricant composition. It reduced computational complexity by up to 60.58% and 

achieved prediction accuracies with R² values exceeding 99%.  

c. The combined SiPLS-BGWO optimization method proved to be an efficient and 

powerful technique for quantitative analysis of lubricant composition. By integrating 

the strengths of both SiPLS and BGWO, the method significantly improved predictive 

accuracy, as seen with the reduction in RMSE for predicting mineral oil from 1.1283 to 



0.7069. Additionally, the number of selected wavenumber points was reduced from 192 

to 39, enhancing model simplicity and efficiency. These improvements demonstrate the 

capability of the SiPLS-BGWO method to optimize feature selection effectively and 

deliver accuracy for complex spectral data analysis. 
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