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Abstract
The emerging trend of distribution generation with existing power system network leads uncertainty factor. To handle this 
uncertainty, it is a provocation for the power system control, planning, and operation engineers. Although there are numer-
ous techniques to model and evaluate these uncertainties, but in this paper the integration of Copula theory with Improved 
Latin-hypercube Sampling (ILHS) are incorporated for Probabilistic load Flow (PLF) evaluation. In probabilistic research 
approaches, the dominant interest is to achieve appropriate modelling of input random variables and reduce the computa-
tional burden. To address the said problem, Copula theory is applied to execute the modelling and interaction among input 
random variables of the active power system network. Considering the real discrete data, the ILHS is adopted. The load 
flow accessibility of the power system is carefully modeled by considering the dependence and uncertainty factors. Modi-
fied IEEE 14-bus system is employed to analyze the efficiency and performance of the proposed model using active power 
system network. Output power of two wind energy farms situated in New Jersey are obtained for accuracy comparison. The 
proposed technique shows the superiority in PLF evaluation.

Keywords  Copula Theory · Correlation · Modified Latin-Hypercube Sampling · Monte Carlo Simulation · Probabilistic 
Load Flow

1  Introduction

For the operation of future power systems renewable energy 
sources (RESs) provide high level of uncertainties due to 
its chaotic dynamics and lack of uniformity [1]. It is a vital 
task for power system engineers to assess the influence of 
uncertainties on power system control, planning, analysis 
and operation. Power distribution system planning with 
demand uncertainty is considered in [2–5], for transmission 
expansion planning [6].

Steady state performance is ultimate need for the power 
system network. To fulfill the need a highly robust method 
probabilistic load flow (PLF) under possible uncertainties is 
adopted. The main advantage of the PLF analysis is to pro-
vide the solution of line loading and bus overloading prob-
abilities. This analysis is suitable for identifying the weak 
points and potential crises in power system network. In order 
to provide the valuable information to power systems, the 
requirement is to model the uncertainty with input random 
variable (IRV) more accurately and comprehensively. Sev-
eral methodologies have put forward in literature to solve 
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problems related to correlated IRVs together with Gaussian 
mixture model [7, 8], convolution-based method [8–10], 
point estimation method [11, 12], Monte Carlo simulation 
(MCS) method [12–14], MCS method based on second-
order design sensitivity-assisted [15] and cumulant methods 
[16–18]. Most of these methods only considered the linear 
correlation among the IRVs. To demonstrate the degree 
dependence Pearson’s linear correlation coefficient ρ had 
been used. A fact is that, correlation factors in the power 
system are not limited to linear correlation but also depend 
on non-linear dependence, such as due to environmental and 
social impact, loads in the similar zone have a tendency to 
increase or decrease [19]. Also, various factors affect the 
IRVs for example, the control strategy of a wind energy tur-
bine, wind speed, wind direction and power curve, these fac-
tors might be linear or non-linear relationship, i.e. strongly 
correlated neighbouring wind energy farms [19–21]. For 
obtaining the comprehensive information about the corre-
lation between IRVs. It should be needed to get the degree of 
correlation as well as correlation structure of IRVs.

MCS use non-linear load flow equations without any 
mathematical computation and simplification of miscella-
neous problems. The amount of simulation need to attain 
precise solution by using MCS is not dependent on system 
size [22]. Additional for PLF study, MCS combine with sim-
ple random sampling (SRS) is utmost common technique 
with purely mathematical background and has been widely 
employed for the analysis of power system. With a sequence 
of deterministic calculations this technique simulates several 
uncertainties to solve the required problems [23]. This is 
to be considered as most highly robust, flexible and accu-
rate for PLF study when the sample size is enough high and 
often adopted as a touchstone for other PLF methods [24]. 
Though, because of a huge number of repeated simulations it 
suffers high computational burden [24–26]. Latin hypercube 
sampling (LHS) is an effective sampling method to pro-
duce the sample and this is due to the marginal cumulative 
distribution function (CDF) of IRV [19, 27, 28]. LHS can 
obtain highly accurate results as compare to SRS. However, 
MCS with LHS techniques always take into consideration 
by assuming that: a typical marginal distribution (MD) has 
to follow the IRV and CDF is known. Indeed, most of the 
RESs output and input data is not follow any marginal type 
of distribution. For example, wind energy farm output data 
is not followed any regular MD.

Copula theory (CT) is proposed by establishing the prob-
ability distribution (PD) of the correlated IRVs. This concept 
can obtain the whole information of IRVs with the prospect 
to deal with linear and non-linear correlation relationship 
flexible and robustly. The dependency degree among IRVs 
and correlation structure between different IRVs included 
with complete information. Due to the discrete data as input 
variable, ILHS proven to be very effective. The results 

obtained from proposed method are compared with two 
methods. Firstly, with MCS with Copula and SRS known 
as MCS-C. Secondly, with LHS with genetic algorithm 
and local search known as (ILHS-GA). Proposed method is 
tested on modified IEEE-14 bus system. The results obtained 
by MCS-IS is compared with MCS-C and ILHS-GA with 
respects to the criteria of both robustness and computational 
time.

The rest of the paper is organized as follows. Modelling 
of correlated IRVs adopted by Copula theory is presented in 
Sect. 2. An ILHS is in Sect. 3. MCS-IS and computational 
calculations is presented in Sect. 4. Section 5 present results 
and discussion. Conclusion is drawn in Sect. 6.

2 � Formulation

2.1 � Limitation of Correlation Coefficient ρ 
and Copula Theory

Person’s linear correlation coefficient (ρ) can only measure 
the degree of linear correlation between IRVs that contains 
various advantages, but the major two are given as. (i) sim-
ple calculation (ii) suitable for elliptically and normally dis-
tribution random variables (RVs). The drawbacks are: (i) it 
only exists for those distribution whose standard deviation is 
defined (ii) it cannot solve the non-linear correlation among 
IRVs (iii) noninvariant under non-linear resolutely growing 
transformation of RVs [19].

The copula is described as “ a function that pair mul-
tivariate joint CDF to its one dimensional (1D) marginal 
CDFs”. The main function of CT is intended to separates the 
function of multivariate joint distribution (MJD) into its cor-
relation structure and MD. For example, two variable case, 
if r1 and r2 are two RVs, F1(r1) and F2(r2) are the marginal 
CDFs of r1 and r2 respectively. F12(r1, r2) is the joint CDF. 
As proved in Sklar theory, a Copula function (CF) C exists 
and describe in Eq. (1)

If F1(r1) and F2(r2) are continuous marginal CDFs then 
CF is unique. If it is not continuous then it will be unique 
in the range of marginal CDFs. If a RV r has an invert-
ible CDF F(r) than RV, U = F(r) also follow the uniform 
distribution in the range of [0, 1], according to Eq. (2). For 
example, two-variable case, if U1 = F1(r1) and U2 = F2(r2) 
are marginal CDFs of RVs r1 and r2 respectively than their 
joint CDF F12(U1, U2) can be obtained by using Eq. (3). In 
such a case, the range of the Copula function, that are joint 
CDF of RVs are [0, 1].

(1)F12

(
r1,r2

)
= C

(
F1

(
r1
)
,F2(r)

)
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where F−1
1

(
u1
)
&F−1

2
(u2) are the inverse function of F1(r1) 

& F2(r2) respectively. The range of the inputs u1 and u2 are 
[0, 1]. Similarly, it is true for joint probability density func-
tion (PDF), if r1 and r2 are two RVs. f1(r1) and f2(r2) are the 
marginal CDFs of r1 and r2 respectively, and f12(r1, r2) is the 
joint PDF, following Eq. (4) can be derived by Eq. (1)

where C(F1(r1), F2(r2)) is the Copula density function. Equa-
tion (5) is for multivariate random vector (MRV) case.

where

is the Copula density function. f(r1,r2,……….,rm) is the 
joint PDF of MRV rm×1 = [r1,r2,…………,rm].

T. T denotes the transpose of the vector and F1(r1),
F2(r2),………..,Fm(rm) are the marginal CDFs of RVs r1,r2,…
……,rm, m is the number of variables. More, information 
about this theory is available [29].

2.2 � PDF Modelling of Correlated IRVs

Two steps are required for modelling the probability dis-
tribution function (PDF) of IRVs. First step is to attain the 
marginal CDFs and secondly is to choose the suitable CF. 
In the first step, if a RV r, follows any regular MD, then by 
using estimation theory its CDF u = f(r) and its inverse func-
tion r = F−1 (u) could be attain. If RV r does not pursue any 
common MD both empirical CDF and inverse function are 
implemented as marginal CDF and an inverse function due 

(2)
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)
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[
F
−1(u)

]
= u

(3)

F12

(
U1,U2

)
= P

(
U1 ≤ u1,U2 ≤ u2

)

= F12

(
F
−1
1

(
u1

)
,F

−1
2

(
u2

))
= C

(
u1, u2

)

(4)

(
r1, r2

)
=

�
2
F12

(
r1, r2

)
�r1�r2

=
�
2
C
(
F1

(
r1

)
,F2

(
r2

))
�r1�r2

=
�
2
C
(
F1

(
r1

)
,F2

(
r2

))
�F1(r1)�F2(r2)

.
�F1

(
r1

)
�r1

.
�F2(r2)

�r2

⋯

= C(F1

(
r1

)
,F2

(
r2

)
)f1

(
r1

)
f2

(
r2

)

(5)f
(
r1,… , rm

)
= C

(
F1

(
r1
)
,…… ...,Fm

(
rm
))
.

m∏
i=1

fi
(
ri
)

(6)

C(F1(r1),F2(r2),……… ..,Fm(rm))

=
�
m
C
(
F1

(
r1

)
,… ....,F

m

(
r
m

))
�F1(r1),F2(r2),……… ..,Fm(rm)

to the Law of large numbers. When the discrete data vector 
of RV r is given r1×n = [r1, r2…………….,rn]. The probability 
of it can be compute as 1/n. The empirical CDF and inverse 
function may be computed as.

	 (I)	 Classify the elements in descending order r1×n = [r1, 
r2,……………..,rn], and change the name as r ′ 
1×n = [r ′ 1,……………..,r ′ n].

	 (II)	 The empirical CDF u = Fe(r) and inverse function 
r = F−1(u) of the RV r is obtained by Eqs. (7) and 
(8), respectively.

Step 2, Suitable Copula function is selected. There is no 
fixed rule for selection of suitable Copula function. In fact, 
selection of suitable Copula function was and is an ongoing 
research area, but steps of general procedure for selection 
of Copula is give as:

For the selection of commonly used copula function, esti-
mation theory is appropriate, i.e. Maximum likelihood 
estimation method.
To select optimal Copula function.

In this work, shortest distance method is adopted for 
selection of suitable Copula function that depends upon 
empirical Copula and Euclidean distance. It can be express 
as

If the condition in the Eq. (9) (Bracketed) is fulfilled then 
it is equivalent to 1 and termed as indicator function. Oth-
erwise, it is 0. Ce is the empirical function of rm×n = [r1j,…
…….,rmj]T. j = 1,2,……..,n, n is samples of m RVs. rim

m
 is 

the order statistics and 1 ≤ i1,……..,im ≤ n is the vector of 
I consist of variable m. The function consists of Euclidean 
distance between C and Ce could be computed as:

(7)
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⎧
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n
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In the given Eq. (10), C is the theoretical Copula function, 
Ce is the empirical Copula function and dn is the Euclidean 
distance. If dn is smallest value with proposed Copula func-
tion than this Copula function is considered as an optimal 
Copula function for certain set of data.

The random number matrix (RNM) Rm×N  of cor-
related multivariate random vector (MRV) vector 
rm×1 = [r1,……… ., rm]

T f  can be produced by defining the 
succeeding steps.

	 (I)	 For the selection of Copula function, optimum pro-
cedure has to adopt as designate above.

	 (II)	 Generate RNM, Um×N = [u1s,……, ums]T. In this vec-
tor matrix, the first variable with N samples is u1s 
and uis = [ui1,……,uiN], where i = 1,2,…….,m. The 
technique used to generate these samples is SRS.

	 (III)	 Inverse function of individual RV has to be deter-
mined that associate to rm×1 vector.

	 (IV)	 RNM Rm×N = [r1s,………..,rms]T of multivariate 
RV vector rm×1 which preserve the MD, as well 
as correlation affiliation of rm×1 vector, created by 
Eq. (11).

3 � Improved Latin‑Hypercube Sampling

As described in literature [13, 14, 25, 26], LHS has higher 
sampling efficiency as well as better robustness as compared 
to SRS techniques. LHS needs marginal CDF of invert-
ible random variable. Actually, the historical data obtain 
by supervisory control data acquisition (SCADA) or wide 
area measurement system (WAMS) always in discrete data 
form. It limits the application of LHS technique in some 
circumferences. So, ILHS is proposed in this paper because 
ILHS depend upon the CDF future of IRVs. Let’s say, for the 
invariant case, the vector of discrete data is r and formulated 
as r1×n = [r1,………,rn] is known. Each discrete data has the 
probability of 1/n. Each n/N interval has an equal dimen-
sion of the discrete data if marginal CDF Y = F(r) range is 
divided into interval of N non-overlapping data. Due to this 
condition the following steps can be used to generate random 
number vector (RNV):

	 (I)	 Categories the vector of discrete data with 
r1×n = [r1,………,rn] from small to large numbers 
and rename it r ′ 1×n = [r ′ 1,………,r ′ n].

	 (II)	 k is the position parameter of Pth (P = 1,………..,N) 
of random number (RN) is to be computed and r′′

p
 of 

(11)ris = F−1
i

(
uis

)

RV r in the vector r1×n = [r1,………,rn] by following 
Eq. (12):

	 (III)	 To obtain the final RNV r ′′ 1×n, randomly arrange 
the vector r ′′ 1×n that is obtained by Eq. (12).

In a similar mode, multivariate random matrix (MRM) 
Rm×N may be created by following steps:

	 (I)	 Create the RNV r ′′ 1×n = [r ′′ 11,………,r ′′ 1 N], of 
RV r1 in consonance with its vector of discrete 
data, r1 = [r11,………,r1n] by the ILHS.

	 (II)	 Position parameter k is computed for the Pth 
(P = 1,……….,N) of RN r′′

1p
 of the RV r1 in vector 

r1 by Eq. (12).

Same for other RVs rh(h = 2,3,………,m), its RNV is r ′′ 
h = [r ′′ h1,………,r ′′ hN] and rh = [rh1,…………,rhn] is discrete 
data vector of RV rh. These steps to obtaining the RNM R 
′′ m×N = [r ′′ 1,……….,r ′′ m], granted that it will preserve the 
correlation between MRV rm×1.

4 � Computational Procedure of MCS‑IS

Firstly, need to generate the RNs that preserve the MD and 
correlation between IRVs. In this work, for the calculations 
of deterministic load flow (DLF) equations related to exact 
non-linear load flow are implemented as:

where input vector of the active and reactive power injection 
is denoted as w, the state vector of nodal voltage and angle 
is denoted as x, the line flows output vector is denoted as z, 
the flow function of the nodal power line is denoted as f & 
g respectively [30].

The procedure of computational calculations for MCS-IS 
is outlined as follows:

	 (I)	 Set the necessary data needed for DLF, power injec-
tion vector, sample size, and so forth.

	 (II)	 Choose the appropriate Copula function as 
described in Sect.  2.3, Generate the RNM 
Um×N = [u1s,……, ums]T, here in this vector matrix, 
the first variable with N samples is u1s uis = [ui1,…
…,uiN], where i = 1,…….,m. the technique used 
to generate these samples is /;’p[-SRS and in the 
range of [0, 1] with suitable Copula function.

(12)k = Round
(
P.

n

N

)

(13)

{
x = f (w)

z = g(x) = g(f (w))
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	 (III)	 This is for MCS-IS, get the RNM U  ′′ 
m×N = [u1s,……, ums]T, here in this vector matrix, the 
first variable with N samples is u1s and uis = [ui1,…
…,uiN], and i = 1,2,…….,m, by the ILHS.

	 (IV)	 The vector of power injection is rm×1 and according 
to its data compute inverse function r = F−1(u) with 
its marginal CDF’s. Generate RNM Rm×N = [r1s,..…, 
rms]T(ris = [ri1,……, riN]) vector of power injection 
rm×1 and with matrix U′′m×N produced in Step III.

	 (V)	 Method of Newton Raphson load flow is imple-
mented and Run the DLF using Eq.  (13) for N 
times, and then calculate the state vector x and line 
flow output vector z.

	 (VI)	 Determine the probabilistic distribution of x and z 
by using estimation theory with statistical proper-
ties.

5 � Results and Discussions

5.1 � Accuracy Assessment of IRVs

Two wind energy farms situated in the city of New Jersey 
United States, that have total active output power (PWF), 
which is to assess the accurateness of probability distribu-
tion of correlated IRVs based on Copula theory. In this case 
study, 52,559 discrete data (Eastern wind energy data set) 
PWF output of two wind farm’s from 1st Jan to 31st Dec 2006 
with 10 min average interval are adopted [31]. Scatter plot 
with a histogram of PWF output net-capacity of mentioned 
wind energy farms PWF1 & PWF2 respectively is shown in 
Fig. 1. From this figure, it is clearly shown that PWF1 & PWF2 
are strongly correlated with ρ = 0.978. It is also shown in the 
histogram that PWF1 and PWF2 is not follow common MD.

The literature covers the selection of different suitable 
Copula functions, so according to this four Copula function 
is proposed that is suitable for this work. By using Eq. (10). 
the proposed four Copula functions, Euclidean distance dn 
is calculated individually. The Gumbel Copula has smallest 

value of dn = 0.713 and the worst one is Clayton Copula with 
the value of dn = 5.041. For Frank and Gaussian Copula, the 
values of dn are between of them. It is concluded that the 
suitable function to fit for given dataset is Gumbel Copula. 
Figure 2 shows the scatter plot of u1 and u2, where u1 and 
u2 are the CDFs of PWF1 & PWF2 respectively. In Fig. 3 the 
results of simulation with different Copula functions are pre-
sented. It is shown that almost all Copula functions are look-
ing to be fit at given dataset. Among all of these, the most 
suitable one is Gumbel Copula function for given dataset. 
Gumbel copula function is selected for further study.

There are two types of errors, average root mean square 
(ARMS) ζ error index of CDF and relative error index ɛs 
consist of statistical properties for PWF of wind energy farms 
are expressed in Eqs. (14) and (15) respectively:

Fig. 1   Scatter and histogram plot for both wind farms net-capacity

Fig. 2   Both Wind farm’s scatter plot (output active power CDF)

Fig. 3   Both wind farm’s scatter plot (Generated CDF with Different 
Copula Function)
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In term ɛs, the subscript s means statistical properties 
of wind energy farm’s PWF such as kurtosis, skewness, 
mean and standard deviation. PWFgs & PWFri are produced 
and actual values of PWF, correspondingly. PWFgi & PWFri 
are the ith values on the CDFs are produced with actual 
values of PWF, simulation points numbers are given as N 
[19]. The results of both indices are shown in Tables 1, 
2 respectively. The most suitable one is Gumbel Copula 
function as shown in the results for the output datasheet 
of wind energy farm.

CDFs of PWF are shown in Fig. 4 of correlated IRVs. 
The simulation results of Fig. 4 shows that the correlation 
influence on the synchronization of the PWF1 & PWF2 and 
further affect the PDF of wind energy farm’s PWF. When 
the degree of correlation is large. It means strong syn-
chronization of wind energy farms and shows PWF of the 
wind energy farm is increased. Also, shows that mislead-
ing results will occur without dependence factor. More, 
Fig. 4 also demonstrate that the results obtained by Copula 
theory of correlated IRVs are accurate.

5.2 � MCS‑C, ILHS‑GA and MCS‑IS Performance 
Evaluation

The performance of proposed method with compare with 
MCS-C and ILHS-GA is assessed by modified IEEE 
14-bus. Test systems deterministic data are conferred 
in [30]. Loads active and reactive power are modelled 
as Gaussian distribution. Correlation between load and 
demand is demonstrated as Gaussian Copula function. 
Gaussian distribution parameters such that mean and 
standard deviation are equal to its deterministic value and 
arbitrary value respectively. More, to control the wind 
energy farm constant power factor approach is used. The 

(14)ζ =

�∑N

i=1

�
PWFgs − PWFri

�2
N

× 100%

(15)�s =
|||||
PWFgs − PWFrs

PWFrs

|||||
× 100%

results obtained by MCS-C method is adopted as accurate 
and reference for MCS-IS method. To validate the dis-
tribution accuracy of output RVs relative error index is 
implemented. as in [19, 23, 24].

where* represent the type of output RV and divided into 
four parts in this case study, such as: line active power P and 
line reactive power Q, nodal voltage magnitude V and nodal 
voltage phase angle θ. The mean and standard deviation are 
given as μ and σ, refer to statistical properties of output RVs 
[19]. Here, the subscript a mean is actual value of output RV 
obtained by MCS-C essentially considered in this work as a 
reference. RV output value obtained by MCS-IS and ILHS-
GA is written as subscript s.

5.3 � Modified Test System

Modified IEEE 14-bus test system is used for this work. At 
bus 13 and bus 14 both wind farms are located, as shown 
in Fig. 5. Total input RVs consist by this test system are 
26 and total no of loads are 11 that covered into two parts: 

(16)�
∗
�
=
||||
�a − �s

�a

|||| × 100%

(17)�
∗
σ
=
||||
σa − σs

σa

|||| × 100%

Table 1   All Copula’s with Relative error index ɛs of PWF

Index ɛs (%) Kurtosis Skewness Mean Standard 
deviation

Gumbel 0.194 0.3804 0.024 0.281
Gaussian 0.116 0.899 0.542 0.866
Clayton 14.65 15.981 0.082 4.381
Frank 7.197 6.862 0.381 1.225

Table 2   ARMS error index of All Copula’s

Various Copula function with ARMS index (%)

Gumbel Gaussian Clayton Frank
0.154 0.276 0.593 0.488

Fig. 4   CDF plot of both wind farm’s PWF
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nodes 1–5 covered in part I, and nodes 6–14 covered in 
part [19]. Information about load modelling as Gaussian 
distribution describe in previous section. Accordingly, the 
parameters designed for mean values of loads and standard 
deviation values are deterministic and arbitrary respec-
tively. For both parameters 15% value set in part I and 
12% in part II. The correlation coefficient among loads 

of the same zone is set at 0.95 and in a different zone are 
set at 0.7.

In this proposed scheme, line active power P has selected 
as descriptive for the sake of the accuracy of output RVs. 
By using Eqs. (16) and (17) the error curves of �p� and �p� 
are calculated respectively, for MCS-C, MCS-IS and ILHS-
GA methods as displayed in Figs. 6 and 7. The mean errors 

Fig. 5   Modified IEEE 14-bus 
test system

Fig. 6   Mean error curves 
comparison of P14-13 for both 
methods

(a)

(b)
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comparisons of active power flow through the line 14 to 13 
(P14-13) are displayed in Fig. 6a, b, correspondingly. Simi-
larly, for standard deviation errors comparisons are shown 
in Fig. 7a, b. The result shows that curve obtained from 
proposed method is closer to touchstone method. More error 
is found with ILHS-GA method. The error comparisons of 
remaining output RVs are shown in Table. 3. The PDF and 
CDF of P14-13 are shown in Fig. 7. With MCS-C method 
sample size is 52,559 and with MCS-IS and ILHS-GA 
method sample size is 600 are adopted in these plots. The 
index of ARMS error calculate by Eq. (16) is 0.154% for 
P14-13 listed in Table. 2, with Gumbel Copula function. With 
the use of modified IEEE 14-bus test system, the computa-
tional time of these three methods are illustrated in Table 4. 
The required computational time considered for test system 
is 915 s for MCS-C method with sample size 52,559.

The DIgSILENT PowerFactory framework is utilized 
to perform simulation and examine the performance of 
both methods. The PC consist of following hardware con-
figuration with processor of AMD Model No A12-9700P, 
RADEON R7, with 10 COMPUTOR CORES UC + 6G (4 
CPU’s), 2.5 GHz processing speed, and dual channel 8 GB 
DDR3 RAM.

In the simulations, MCS-C, MCS-IS and ILHS-GA are 
simulated 100 times with step size 100 up to 1000 samples. 
Both error indices are calculated for four output random 
variables. The results of these error indices are shown in 
Figs. 6, 7. These Figures demonstrate that convergent robust-
ness of MCS-IS is better than MCS-C and ILHS-GA meth-
ods. The PDF and CDF plot of P14-13 are shown in Fig. 8. 
It is clearly shown that both plots are close to each other 
rather than ILHS-GA method. From the results of Table 4, it 

Fig. 7   Standard deviation error 
curves comparisons of P14-13 for 
both methods

(a)

(b)

Table 3   Error comparison of both methods at sampling size 600

*  M for Mean, SD for standard deviation & MAX for maximum

Methods MCS-C ILHS-GA MCS-IS

εv
μ
(% ) M 0.244 0.201 0.018

SD 0.026 0.021 0.016
MAX 0.084 0.078 0.106

εv
σ
(% ) M 2.788 2.158 1.362

SD 1.565 1.178 0.655
MAX 8.201 5.785 3.762

εθ
μ
(% ) M 1.968 1.354 0.476

SD 1.581 1.123 0.301
MAX 7.405 3.215 1.489

εθ
σ
(% ) M 2.597 1.892 1.268

SD 1.896 1.451 0.807
MAX 8.18 5.356 3.397

ε
Pij

μ (% ) M 3.152 2.458 0.878
SD 2.125 1.568 0.468
MAX 10.991 7.325 2.456

ε
Pij

σ (% ) M 2.648 1.785 1.301
SD 1.655 1.201 0.861
MAX 7.781 4.325 2.704

ε
Qij

μ (% ) M 2.485 1.754 0.812
SD 1.596 1.325 0.387
MAX 7.612 6.214 2.141

ε
Qij

σ (% ) M 3.4762 2.471 1.687
SD 1.798 1.125 0.501
MAX 9.023 5.021 2.874
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could be observed that the computational burden of MCS-IS 
method is lesser on average. For MCS-IS, it is a bit larger 
than MCS-C and ILHS-GA at 400 sample sizes. It is due to 
additional steps needed for ILHS and genetic algorithm. But 
this computational time difference is negligible even bet-
ter when sample size is large. Additionally, the probability 
distribution of P14-13 for MCS-C with 52,559 samples. For 
MCS-IS and ILHS-GA methods the sample size is 600. So, 
the simulation results validate that MCS-IS can attain a high 
accurate solution as compare to MCS-C and ILHS-GA with 
much less sample size. From the discussion of above results, 
Overall, it is summarized that MCS-IS is an accurate, flex-
ible and robust method for probabilistic problems. Also, it 

has a tremendous potential for PLF analysis of wind energy 
sources.

6 � Conclusion

In this work, a probabilistic load flow method for active 
power system network has been proposed. Uncertainty 
is increasing day by day due to penetration of distributed 
and stochastic generation such that solar and wind energy 
in power system network. PLF study is essential factor to 
model the uncertainty. Copula theory has been proposed to 
model the probability distribution of correlated IRVs. From 
the simulation results, this theory has the capability to deal 
with a correlation degree as well as correlation structure 
between IRVs flexibly that is a fundamental need for model-
ling of IRVs probability distribution. Modified Latin-hyper-
cube sampling has implemented to conquer the limitation of 
LHS. From the results, ILHS can deal with discrete real data 
obtain by SCADA or other real data measuring techniques. 
More, ILHS is unconstraint by the marginal distribution type 
variables. MCS-IS can converge with much fewer samples 
as compare to MCS-C and ILHS-GA. It means, it is more 
efficient and robust method. Also, its computational time is 
almost similar to MCS-C and ILHS-GA at lesser sample size 
but it decreases when sample size is large. By comparing the 
overall performance and accuracy of these methods MCS-C, 
MCS-IS and ILHS-GA, it is clearly shown that MCS-IS is 
an auspicious method for PLF study for active power system 
network, especially with wind energy farms.

Table 4   Computational time with 100 step size

Sample size Methods

MCS-C seconds 
(S)

ILHS-GA sec-
onds (S)

MCS-IS 
seconds 
(S)

100 0.69 0.58 0.72
200 1.16 0.60 0.107
300 1.17 0.95 1.26
400 1.27 1.31 1.05
500 1.33 1.46 1.45
600 1.42 1.70 1.78
700 2.34 1.86 2.15
800 2.51 2.33 2.45
900 2.85 2.71 2.78
1000 4.21 3.04 3.19

Fig. 8   PDF and CDF curves of 
P14-13 for both methods
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