PCCP

PAPER

Check for updates

Cite this: Phys. Chem. Chem. Phys., 2021, 23, 347

Received 23rd August 2020, Accepted 7th December 2020

DOI: 10.1039/d0cp04457a

rsc.li/pccp

Introduction

Hydrogen is being pursued as a future source of energy in the current transition process of fossil energy to clean energy.^{1–3} As a vital approach to producing sustainable hydrogen, the hydrogen evolution reaction (HER, *e.g.*, water decomposition) has attracted more and more attention.⁴ Advanced catalysts for the electrochemical HER are able to reduce the over-potential and thus improve the efficiency of this important electrochemical process. The most effective catalysts are platinum group metals, which are too expensive for a wide range of applications. It is an inevitable trend to develop active catalysts based on more abundant and cheaper materials.⁵ In the past few decades, transition metal dichalcogenides (TMDs), represented as MX₂ (M = transition metals, X = S, Se, and Te), have become a type of promising candidate compound to

Non-stoichiometric molybdenum sulfide clusters and their reactions with the hydrogen molecule[†]

Yan Chen,^{ab} Jia-Jun Deng,*^{ab} Wen-Wen Yao,^{ab} Joseph Israel Gurti,^{ab} Wei Li,^{ab} Wen-Jie Wang, ^{ab} Jian-Xi Yao^{cd} and Xun-Lei Ding *^{ab}

Structures of non-stoichiometric Mo_xS_y clusters (x = 2-4; y = 2-10) were studied by density functional calculations with global optimization. Besides 1T phase like structures, a novel regular grid structure in which Mo atoms are well separated by S atoms was found, which might be used as a building-block to construct a new type of two-dimensional molybdenum sulfide monolayer. The hydrogen molecule prefers to be adsorbed onto Mo atoms rather than S atoms, and Mo atoms with less S coordination have a higher ability to adsorb H₂. In addition, the reaction pathways for H₂ dissociation were studied on two clusters with the highest H₂ adsorption energy (Mo_2S_4 and Mo_3S_3). The vacant bridge site of Mo–Mo in S-deficient clusters, which corresponds to the sulfur vacancy in the bulk phase MoS_2 , is favored by H atom adsorption and plays an important role in the H atom transfer on Mo_xS_y clusters. Our results provide a new aspect to understand the reason why S defect in MoS_2 and MoS_2 with an Mo-edge could enhance the catalytic performance in the hydrogen evolution reaction.

replace traditional catalysts based on platinum. Among these TMDs, molybdenum disulfide (MoS_2) has been proven to be an attractive HER catalyst with high chemical stability and good electrocatalytic performance.⁵⁻⁸ Compared with bulk MoS₂, a two-dimensional MoS₂ monolayer has better catalytic performance due to the exposure of a large fraction of active sites.^{9,10} Several methods could further improve the catalytic activity of MoS₂, including choosing the Mo-edge of MoS₂ or introducing sulfur vacancy on the basal plane of MoS₂ as active sites.^{11–16} In addition, some studies indicated that MoS2 can also be used as a promising hydrogen storage material,¹⁷ or as an excellent support¹⁸ and catalyst¹⁹⁻²¹ in the process of hydrogen storage. MoS₂-like nanostructures have also been widely studied for their high catalytic performance in hydrodesulfurization (HDS) of sulfur-containing compounds in fuels, and S-H groups were suggested to play an important role in supplying the hydrogen during HDS.^{22,23} However, the morphology of MoS₂ nanoclusters in the catalyst is very complex, and the clusters on surfaces may have different shapes determined by the conditions under which they are synthesized.22

It is difficult to understand the reaction mechanism of catalytic reactions on the surface of molybdenum sulfide materials due to the complexity of real catalysts. However, clusters composed of limited number of atoms are experimentally and computationally tractable systems, so studies on rational cluster models may serve as a bottom-up strategy to understand complex systems and processes.^{24,25} As for molybdenum sulfide clusters, the stable structures and properties of small stoichiometric $(MOS_2)_n$ clusters have been investigated.^{26,27} Our previous work²⁷ reveals that the

View Article Online

^a School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, P. R. China.

E-mail: dingxl@ncepu.edu.cn, djiaj@ncepu.edu.cn

^b Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Huilongguan, Beijing 102206, P. R. China

^c State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China

^d Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing 102206, China

[†] Electronic supplementary information (ESI) available: All data for Mo–Mo distances, natural bond orbital analysis for $H_2...Mo_xS_y$ clusters, all obtained structures of Mo_xS_y clusters, the relationship between E_{ad} and other adsorption properties, and preliminary calculations on the grid structure. See DOI: 10.1039/ d0cp04457a

View Article Online

PCCP

structure of stoichiometric $(MoS_2)_n$ clusters can be viewed as fragments of the MoS₂ monolayer with the 1T phase, which implies a connection between the clusters and bulk phase materials. Considering that the high reactivity of molybdenum disulfide catalysts is mostly due to the edges or sulfur vacancies, it is of vital importance to research non-stoichiometric molybdenum sulfide clusters which are more suitable for simulating imperfect local structures of the surface or amorphous molybdenum sulfide than the stoichiometric ones. Some stable structures and properties of non-stoichiometric $Mo_x S_y$ clusters have been obtained,^{28–33} and other studies used these structures as models to study the adsorption or reaction for small molecules, such as H₂ and CO₂, to synthesize methanol. Different catalytic properties of stoichiometric and non-stoichiometric clusters have been found.34 Baloglou et al.²⁴ studied the structures of $Mo_3S_{13}^{2-}$ and its protonated forms. They found that the H atoms prefer to make the S-H bond rather than the Mo-H bond in these S-rich clusters and suggested the "sulfur-centered" mechanism of HER catalysis. Recently, Raghavachari and Gupta et al.35 investigated the adsorption and dissociation of the H₂ molecule on some anionic $Mo_x S_v$ clusters (x = 1, y = 3-5; x = 2, y = 2-4; x = 3, y = 3-5). They found that the formation of the Mo-H bond is preferred by not only S-deficient clusters $(e.g., Mo_2S_2^{-})$ but also some S-rich clusters $(e.g., Mo_2S_2^{-})$ $Mo_2S_5^{-}$), while the H atom is more likely to combine with the S atom and finally form the H_2S molecule only for MoS_4^- and MoS₅, in which the only Mo atom is coordinated with four S atoms and has no coordination space for H or H₂. They also investigated the reactions of some anionic $Mo_xS_y^-$ with H₂O to reveal the mechanisms of the HER with cluster models.³⁶⁻³⁸

It is clear that different ratios of *x* to *y* influence the reaction mechanisms to a large extent, and the charge state of clusters may also have a significant impact on their reactivity. Since in previous work, much attention has been paid to anionic $Mo_x S_v$ clusters, a systematic study on neutral non-stoichiometric $Mo_x S_y$ clusters is needed to obtain the comprehensive information of the structures of $Mo_x S_y$ and the relationship with the reactivity towards H_2 . Here, we report the structures of $Mo_x S_y$ (x = 2-4; y = 2-10) clusters obtained by density functional theory (DFT) calculations. Based on that, we further discuss the adsorption and dissociation of H₂ on some typical clusters. The formation of the H₂ molecule from two H atoms on surfaces and the desorption of H₂ from the surface are two important steps in the HER. Our studies on the adsorption and dissociation of H₂ on clusters may be viewed as the reverse processes of the two steps, which may provide some useful information for understanding the mechanisms of the HER. The adsorption and dissociation processes studied in this work also have a close relationship with the fields of hydrogen storage and HDS.

Theoretical methods

All our DFT calculations were performed using the Gaussian 16 program suite.³⁹ A Fortran code based on a genetic algorithm and DFT calculations was developed⁴⁰ to generate

sufficient and reasonable initial structures of Mo_xS_y clusters, which has also been successfully applied to some other clusters.41-43 Then different isomers were optimized with the B3LYP hybrid density functional^{44–46} and the def2-TZVP basis set.47 The B3LYP functional was chosen since it has been adopted in some previous studies on Mo_rS_v clusters and provided reasonable results.^{31,36,48,49} Dispersion correction⁵⁰ and diffuse functions⁵¹ were involved in all calculations, which may be necessary for the reliable description of the interaction between H₂ and the clusters. Systems with Mo atoms may have complicated electronic states, so the singlet, triplet and quintet states were all taken into account in our calculations, as was done in previous work.^{52,53} Electrostatic potential (ESP) analysis was performed to investigate the favorite adsorption site of Mo_xS_v for the hydrogen molecule. Natural bond orbital (NBO) analysis⁵⁴ was performed to acquire the electron transfer in the adsorption complexes and orbital interactions through second order perturbation theory. Harmonic vibrational frequency calculations were performed on optimized structures at the same theoretical level to ascertain the nature of the stationary points (no imaginary frequencies for minima and only one imaginary frequency for transition states). All energies reported in this work are total electronic energy with zero-point vibrational energy (ZPE) correction, except that the Gibbs free energy was reported for the dissociation reaction of H₂ on clusters. The Gibbs free energy was calculated with the standard temperature (298.15 K) and pressure (1 atm), which was commonly used in previous theoretical studies on the HER.^{15,35,37,55,56}

Results and discussion

Structures of Mo_xS_y clusters (x = 2-4; y = 2-10)

The most stable and some typical low-lying isomers of Mo_xS_y clusters (x = 2-4; y = 2-10) are shown in Fig. 1. Considering the accuracy of calculation methods, the most stable structure under a certain theoretical level may not necessarily be the ground state of the cluster. In addition, the studied clusters are used to simulate the local structures on surfaces, and metastable structures of clusters may also exist on surfaces. Therefore, besides the most stable structures of each cluster in this work (Fig. S1–S3 in the ESI†).

Most low-lying isomers tend to have singlet electronic states, and triplet is also quite common. Specifically, the most stable structures of the studied Mo_xS_y (denoted as x-ya) are all singlet, except that the triplet is preferred for $Mo_2S_{2,4,8}$, Mo_3S_3 , and Mo_4S_9 . For some clusters, the singlet and triplet have very close energies: the singlet of 3-7a/4-4a is only 0.03/0.06 eV higher in energy than the corresponding triplet, while the singlet of 3-4a/4-8b is more stable than the triplet by only 0.01/0.03 eV, respectively. Therefore, the ground states of these clusters could be either singlet or triplet. Quintet electronic states generally have higher energies than the singlets and triplets for all the obtained structures (as shown in Fig. 1 and Fig. S1–S3, ESI†), except 2–3b and 4–9b. For most clusters, x-ya is lower in energy than the corresponding second PCCP

Fig. 1 Most stable and some typical low-lying isomers of Mo_xS_y clusters (x = 2-4; y = 2-10). Dashed lines denote the Mo–Mo bonds of 275–380 pm, Mo–S bonds of 244–275 pm, and S–S bonds of 214–237 pm. The symmetry, electronic state, and relative energy (in eV) with respect to the ground state are listed below each structure. The red line and number stand for the shortest distance between the two Mo atoms in each cluster.

most stable structure (denoted as x-yb) by more than about 0.2 eV, so it is quite reliable to assign that x-ya is the ground state structure for each cluster. There are three exceptions, Mo₃S₃, Mo₄S₈ and Mo₄S₉, for which the difference between x-ya and x-yb is less than 0.1 eV. So, for these clusters, the x-yb structures are also reliable candidates for ground state structures.

Below, we focus on the most stable structure of each cluster. When x = 2, an Mo₂-2S_B (S_B is for the bridging S) moiety with a rhombus structure is found in all of the most stable structures except 2–7a. As *y* increases, the structures 2–3a, 2–4a, 2–5a, and 2–6a can be constructed from 2–2a by adding one S_B, two, three, and four S_T (terminal S) atoms, respectively. 2–7a can be viewed as 2–6a with one Mo–S_B–Mo unit replaced by Mo–S–S–Mo. 2–8a can be formed by 2–4a with two S₂^{2–} ions. The Mo–Mo bond length (d_{Mo-Mo}) for the S-deficient Mo₂S_y clusters (y < 2x, here x = 2) is quite short (Table 1, 210 and 204 pm for y = 2 and 3, respectively), and it increases remarkably to 265 pm in

Table 1 Calculated average distance between Mo–Mo atoms (\bar{d}) in the most stable structure of Mo_xS_y clusters (Mo–Mo distances longer than 380 pm are ignored). All values are in picometer

	Mo_2S_y	Mo ₃ S _y	$$ \overline{d} \overline{d}	
у	\bar{d}	ā		
2	210			
3	204	244		
4	265	242	250	
5	279	255	254	
6	299	273	257	
7	319	288	257	
8	276	297	280	
9		347	315	
10			308	

stoichiometric Mo₂S₄, while that for all the S-rich Mo₂S_y clusters (y > 4) is larger than 275 pm. Considering the values of the bond lengths in the bulk MoS₂ (275 pm for the 1T phase and 316 pm for the 2H phase⁵⁷), the short d_{Mo-Mo} (shorter than 275 pm) values for S-deficient and stoichiometric Mo₂S_y clusters indicate that Mo-Mo interactions are strongly favored in these clusters. Short d_{Mo-Mo} in these clusters was suggested to have a close relationship with the high activity of amorphous and 1T phase MoS₂ in the HER.⁵⁷ The bonds with d_{Mo-Mo} between 275 and 380 pm (*ca.* 316 pm *1.2) indicate a medium interaction between the two Mo atoms (shown as dashed lines in Fig. 1), and all the calculated S-rich Mo₂S_y clusters have medium d_{Mo-Mo} .

For x = 3, an Mo₃ core capped with an S_F (S_F is for facecapping S) is favored in Mo₃S₃₋₇. **3-3b** with such an Mo₃-S_F moiety is higher in energy than **3-3a** by only 0.06 eV. **3-4a** can be obtained by **3-3a** with an additional S_F or by **3-3b** with an S_B. **3-5a**, **3-6a**, and **3-7a** can be constructed by adding one, two, and three S_T atoms to **3-4a**, respectively. The average distances between the Mo atoms (\overline{d}) as well as the shortest distances (d_1) gradually elongate as *y* increases from 3 to 9 (Table 1 and Fig. 1. Values for all the Mo-Mo distances are in Table S1 in the ESI†). S-deficient Mo₃S_y clusters have short d_{Mo-Mo} , while stoichiometric Mo₃S₆ has the d_{Mo-Mo} near to the experimental value of the bulk MoS₂ with the 1T phase. In **3-8a**, the Mo₃ core is broken with one Mo-Mo distances are longer than 340 pm.

For x = 4, a three-dimensional tetrahedron Mo₄ core is favored for the most stable structures of S-deficient Mo₄S₄₋₇. All the S atoms locate on the edges of the Mo4 tetrahedron as SB for y = 4-6, and 4-7a can be viewed as 4-6a with one S_B replaced by an S-S moiety. For the Mo4 core, all the Mo-Mo distances are small (less than 259 pm) and the values of \overline{d} gradually elongate from 250 to 257 pm as y increases from 4 to 7. The Mo₄ core does not exist in the most stable structures of stoichiometric Mo₄S₈ and S-rich Mo₄S_{9,10} clusters. In the 1T-phase structure of the stoichiometric 4-8a, four Mo atoms form a rhombus structure with \overline{d} being 280 pm. **4–9a** has a distorted tetrahedral Mo₄ whose Mo-Mo distances are much longer than those in S-deficient Mo₄S₄₋₇, and on it there are two S_B, three S_F, and four S_T atoms. In 4-10a four Mo atoms form a rhombus structure, similar to 4–8a but with longer \bar{d} , and there are two S_F , four S_B , and four S_T atoms.

In all stable geometric structures shown in Fig. 1 (and also those in Fig. S1–S3, ESI†), the oxidation state of each Mo atom is no more than +6, if we roughly assume that each S_T on the Mo atom contributes +2, while each S_B contributes +1. This is consistent with that each Mo atom has 6 valence electrons. Mo atoms with the +6 oxidation state first appear in S-rich clusters 2–5a and 3–9a (also 4–10c in Fig. S3, ESI†). As for the coordination of Mo atoms, it is found that each Mo tends to have bonds with at most four S atoms in the studied clusters, with only a few exceptions in which the coordination number of Mo is five (*e.g.*, 2–8a and 4–9a), while for the bulk materials, each Mo atom is coordinated with six S_F atoms in both the 1T and 2H phase monolayers.

Gemming *et al.* studied the structures of Mo_xS_y clusters $(x = 1 \text{ and } 2, y = 1-6; \text{ and } x = 4, y = 1-12)^{31}$ and anionic $Mo_3S_y^ (y = 0-12)^{33}$ Our calculations with different basis sets confirm their findings for Mo_xS_y (x = 2, y = 2-6; x = 4, y = 4-10) and provide more low-lying structures for each cluster. Moreover, their structure for Mo_4S_8 is actually **4–8b** in our calculations which is slightly higher in energy than **4–8a** by 0.01 eV. They suggested that **4–6a** with a high symmetry (T_d) is a magic cluser with extraordinarily high stability according to its relatively high average binding energy of S atoms among $Mo_4S_y^-$ (y = 1-10) clusters. Our calculations further confirm that **4–6a** is very stable since the energy difference between **4–6a** and **4–6b** is as large as 3.34 eV. Additionally, isomer **4–10b** also has T_d symmetry, and its structure is the same as that of V_4O_{10} , which has many interesting properties.^{58,59}

In our previous work,²⁷ the most stable structures and some low-lying structures for $(MoS_2)_n$ (n = 1-6) have been obtained by using B3LYP and PW91 functionals with def2-TZVP basis sets. A type of structure that can be viewed as fragments of monolayer MoS₂ with the 1T phase was found in these stoichiometric $(MoS_2)_n$ clusters. In this work, after including dispersion correction and adding diffuse functions to the basis sets, similar results are obtained for the clusters studied in both studies (i.e., Mo₂S₄, Mo₃S₆, and Mo₄S₈), which further confirmed the reliability of the theoretical level we used in both studies. In this work, we find that the 1T-type structure found in stoichiometric $(MoS_2)_n$ clusters also exists in non-stoichiometric clusters, such as 3-7a. Additionally, we find another type of structure, as in 3-7b, 3-8a, and 4-9b, which has a regular bonding mode with square Mo₂S₂ units, and all the Mo atoms are well separated by S atoms. The distance between the two Mo atoms in the square Mo₂S₂ unit is longer than 280 pm, even longer than the Mo-Mo distance in the 1T phase MoS₂ monolayer. We speculate that this grid structure might be used as a building-block to construct a new type of two-dimensional molybdenum sulfide monolayer, in which four-coordinated S atoms exist as in 4-9b. Preliminary calculations with a two-dimensional periodic slab model, including zone centered (Γ -point) vibrational frequencies and *ab initio* molecular dynamics calculations, show that this type of grid structure is quite stable under room temperature (detailed calculation results are in the ESI[†]). Further investigations on this novel structure are required to verify the stability and reveal more unique properties.

Adsorption of the H₂ molecule on Mo_xS_y clusters

Adsorption of the H₂ molecule on the most stable Mo_xS_y clusters was studied with different adsorption sites and possible spin multiplicities. For clusters 3-3, 4-8, and 4-9, two low-lying isomers (a and b) were calculated since they are both considered as candidates for the most stable structures. Seventeen adsorption complexes with relatively large adsorption energy (will be described clearly later) have been obtained (Fig. 2). The symbol H_2 -xya(b) stands for the adsorption complex of H_2 on x-ya(b). For H₂-33b, H₂-45a, and H₂-47a, two different adsorption sites have been found, and the second one is labelled with an apostrophe ('). Spin multiplicities do not change after the adsorption of H2, except that for 3-4a, the singlet is more stable than the triplet by 0.01 eV before adsorption, while the triplet is lower in energy by 0.10 eV for H₂-34a. In these clusters, H₂ is adsorbed on Mo atoms with the oxidation state not exceeding +4, which is similar to the results of the H₂ adsorption on anionic $Mo_x S_v^{-}$ clusters.³⁵ Xu *et al.*¹⁰ revealed that S vacancies in two dimensional MoS₂ would contribute to a significant enhancement of the HER performance. It is clear that the S vacancy in the bulk phase MoS₂ could cause the oxidation state of Mo being less than +4, leading to easy adsorption of H_2 , which is consistent with our findings.

Several properties are used to evaluate the strength of the interaction between H_2 and Mo_xS_y clusters (Table 2). E_{ad} is a

Fig. 2 Stable geometric structures of H₂ adsorption on Mo_xS_y clusters with an adsorption energy larger than 0.1 eV. The red line and the number stand for the shorter distance (d_{H-Mo_y} in pm) between two H atoms and Mo for each adsorption system.

Table 2 Properties for the adsorption of H₂ on Mo_xS_y clusters. Listed are adsorption energy (E_{ad} , in eV), free energy change (ΔG , in kcal mol⁻¹) at 298.15 K, electron transfer from Mo_xS_y to H₂ by natural population analysis (Q, in |e|), bond length (in pm) of H–Mo (d_{H-Mo}) and H–H (d_{H-H}), symmetric ($v_s(Mo-H_2)$) and asymmetric ($v_a(Mo-H_2)$) vibration between H₂ and Mo, and vibration of H–H (v(H–H)). Values of d_{H-H} and v(H–H) for free H₂ are also listed for comparison (in cm⁻¹)

Clusters	$E_{\rm ad}$	ΔG	Q	$d_{ m H-Mo}$	$d_{\mathrm{H-H}}$	ν_{s} (Mo-H ₂)	ν_{a} (Mo-H ₂)	ν(H-H)
H_2					74			4418
H_{2}^{-22a}	0.25	0.61	0.14	203	79	716	1242	3628
H_{2}^{-23a}	0.12	3.15	0.18	205	78	668	1214	3761
H_{2}^{-24a}	0.49	-4.54	0.27	193	81	867	1440	3336
H_{2}^{-25a}	0.40	-2.47	0.25	193	81	839	1441	3372
H_{2}^{-33a}	0.16	2.09	0.17	208	78	611	1107	3823
H ₂ -33b	0.47	-4.22	0.22	188	85	892	1571	2800
H ₂ -33b'	0.28	-0.51	0.19	207	78	667	1077	3770
H ₂ -34a	0.33	-1.81	0.35	202	78	733	1213	3747
H ₂ -35a	0.21	1.93	0.27	204	78	699	1235	3816
H ₂ -36a	0.31	-0.75	0.24	196	80	1011	1400	3443
H ₂ -44a	0.28	0.15	0.19	209	77	636	1082	3883
H ₂ -45a	0.30	-0.77	0.25	205	78	676	1150	3805
$H_{2}^{-45a'}$	0.13	2.92	0.24	225	77	3121	994	4152
H_{2}^{-46a}	0.13	1.40	0.23	225	76	2933	972	4136
H_{2}^{-47a}	0.34	-1.45	0.32	203	78	722	1192	3862
$H_{2}^{-47a'}$	0.12	3.19	0.22	227	76	2866	969	4128
H_2^{-48a}	0.16	3.57	0.28	204	78	687	1224	3858

direct measure of the strength, which is defined as $E_{ad} = E(H_2) + E(Mo_xS_y) - E(H_2 - Mo_xS_y)$. Note that in the calculation of E_{ad} for systems like H₂-33b, the energy of 3-3b (not the more stable 3-3a) is used for $E(Mo_xS_y)$. All the Mo_xS_y clusters with the ratio of x to y no more than 1:2 can adsorb H₂ with an adsorption energy larger than 0.1 eV, while all the S-rich clusters cannot adsorb H₂ except Mo₂S₅. It was suggested that the binding energy of hydrogen to an ideal hydrogen storage material should be intermediate between physisorption and chemisorption, about 0.2–1.0 eV.⁶⁰ For the listed clusters in Fig. 2, E_{ad} ranges from 0.12 to 0.49 eV (H₂-24a has the highest E_{ad}), indicating that molybdenum sulfide may be acceptable hydrogen storage materials for some special occasions.

Kubas⁶¹ found that when H₂ is bound to a transition metal atom, electrons will transfer from the hydrogen molecule to the unfilled d-orbital of the transition metal atom with backdonation of electrons from the transition metal to the antibonding orbitals of H_2 . In Table 2, the electron transfer from H_2 to the cluster (Q) is listed. For all clusters, Q is positive and ranges from 0.14 |e| for H₂-22a to 0.35 |e| for H₂-34a. However, the amount of Q does not have a clear relationship with E_{ad} (Fig. S4 in the ESI[†]). Further NBO analysis on interactions between the filled donor and empty acceptor NBOs of the adsorption complexes estimates the energetic importance of these interactions through second order perturbation theory. The results (Table S2 in the ESI⁺) indicate that the dominant interaction is the H-H bond as the donor NBO and the Mo-Mo or Mo-S anti-bond as the acceptor with a high second-order perturbation energy (ΔE_2 , also be termed as the donor-acceptor orbital interaction stabilization energy) while the backdonation with the lone-pair Mo NBO as the donor and the H–H anti-bond as the acceptor usually has low values of ΔE_2 in most adsorption systems.

From the geometric point of view, when H_2 is adsorbed on an Mo atom in Mo_xS_v clusters, the distance between H_2 and Mo can be another indicator of the strength of adsorption. The H₂ molecule is always side-on adsorbed on one Mo atom, and the short one of the distances between Mo and the two H atoms is denoted as d_{H-MO} (Fig. 2 and Table 2). It is clear that d_{H-MO} is closely related to E_{ad} (Fig. S5 in the ESI[†]): three adsorption complexes with the shortest $d_{\text{H-Mo}}$ (\leq 193 pm for H₂-24a, 25a, and 33b) have the highest E_{ad} (≥ 0.40 eV), while three complexes with the longest $d_{\text{H-Mo}}$ (\geq 225 pm for H₂-45a', **46a**, and **47a**') all have very small E_{ad} (≤ 0.13 eV). Another geometric parameter is the bond length of H-H (d_{H-H}) . Considering the charge transfer mechanism of H₂ adsorption, it is expected that stronger adsorption will lead to longer d_{H-H} . Our results (Fig. S6 in the ESI,[†] or Table 2) generally agree with this expectation. Compared with the d_{H-H} of the free H_2 molecule (74 pm), the d_{H-H} is lengthened significantly $(\geq 81 \text{ pm})$ in three complexes with the highest E_{ad} (H₂-24a, 25a, 33b), indicating that H₂ in these complexes is activated to some extent.

Vibrational frequencies of adsorption complexes are useful information to identify the structures of different adsorption sites when compared with Fourier transform infrared (FTIR) or Raman experiments. Three vibrational modes have been found associated with H₂ for each adsorption complex, namely, the symmetric vibration between Mo and H_2 (ν_s (Mo- H_2)), in which two H atoms move in the same direction to Mo, the asymmetric one $(v_a(Mo-H_2))$, in which two H atoms move in the opposite direction to Mo, and the stretch vibration of the H-H bond (ν (H–H)). High values of ν_s (Mo–H₂) and ν_a (Mo–H₂) generally indicate higher interaction strength between H₂ and the clusters (Fig. S7 and S8 in the ESI,† or Table 2). Three complexes with the longest d_{H-Mo} (H₂-45a', 46a, 47a') are exceptions – they have extremely high values of v_s (Mo–H₂), even larger than 2850 cm⁻¹, while their interactions with the clusters are very small (e.g., with very small E_{ad}). Upon adsorption, the H-H bond will be weakened, leading to a decrease of v(H-H)

values in the adsorption complexes, and larger E_{ad} may cause smaller ν (H–H) in general (Fig. S9 in the ESI,[†] or Table 2). Specifically, H₂-33b has the smallest value (2800 cm⁻¹) of ν (H–H), which is much smaller than the free H₂ (4418 cm⁻¹). H₂-33b has the smallest value for ν (H–H) and the largest value for d(H–H), indicating the greatest extent of H₂ activation on it; H₂-33b also has the shortest d_{H-Mo} and the largest ν_a (Mo–H₂), which corresponds to the strong interaction between H₂ and clusters. Note that the total energy of H₂-33b is lower than that of H₂-33a, although 3–3a is more stable than 3–3b, which further implies that H₂-33b is very stable and the adsorption capacity of 3–3b is particularly strong.

The electric field produced by metal cations can polarize the H₂ molecule and enhance the binding of H₂ on metal atoms.⁶² For the clusters studied in this work, different adsorption sites may have a distinct ability to polarize H₂, leading to the variation of the adsorption strength. To investigate the polarization ability of $Mo_x S_v$ clusters, the molecule surface electrostatic potentials (ESPs) of typical clusters (3-3b, 4-4a, 4-5a, and 4-7a) are calculated and shown in Fig. 3. The local maximum values of the ESP $(V_{max})^{63,64}$ are also listed. There are two types of Mo atoms in 3-3b: the one with one S_B and one S_F has $V_{max} = 2.67$ V nearby (denoted as Mo_I), and the one with two S_B and one S_F has $V_{max} = 1.56$ V (Mo_II). H₂ adsorption on Mo_I corresponds to H₂-33b, while H₂ on Mo_II corresponds to H_2 -33b'. All the properties discussed above (Table 2) indicate that the adsorption of H_2 in H_2 -33b is much stronger than that in H_2 -33b' (e.g., E_{ad} is 0.47 and 0.28 eV, respectively). In addition, for each cluster shown in Fig. 3, the larger E_{ad} is always accompanied by the higher V_{max} for different adsorption sites. Mo atoms with less coordination (lower oxidation state) tend to have higher V_{max} . Therefore, they have a higher ability to adsorb the H₂ molecule.

Fig. 3 Electrostatic potential calculated at the B3LYP-D3/ma-def2-TZVP level on the 0.001 au molecular surface of (a) Mo_3S_3 , (b) Mo_4S_4 , (c) Mo_4S_5 , and (d) Mo_4S_7 . The local maximum values of the electrostatic potential (V) for different active sites of the clusters were marked in the corresponding position.

Dissociation of H₂ on Mo₂S₄ and Mo₃S₃

Dissociation of H₂ was studied on the selected Mo_xS_v clusters. For comparing the results with those obtained by other research groups^{6,35} more conveniently, we used Gibbs free energy in this section. The adsorption of H₂ on clusters would cause a decrease in the entropy and an increase of the Gibbs free energy of the system, and the increased value was estimated to be about 0.26 eV under room temperature.65 So systems with small values of E_{ad} (Table 2) may be unstable under thermal conditions. The free energy change (ΔG) for the adsorption process is listed in Table 2. H₂-24a (stoichiometric) and H₂-33b (non-stoichiometric) have the most negative values of ΔG . Therefore, they were selected as two typical adsorption systems for investigation of the dissociation of H_2 on $Mo_x S_v$ clusters. Both singlet and triplet states were calculated along the reaction paths since spin-crossover was found to occur commonly during these reactions,^{66,67} although the ground states of 2-4a and 3-3b are both triplet. The sum of the free energies of infinite separated H₂ and triplet 2-4a or 3-3b was set to zero, respectively.

Fig. 4(a) shows the reaction path of **2–4a** with H_2 . It starts from the triplet **2–4a** (lower in energy than ¹**2–4a** by 9.7 kcal mol⁻¹)

Fig. 4 DFT calculated potential energy profiles for the dissociation of H₂ on (a) Mo_2S_4 and (b) Mo_3S_3 . Relative Gibbs free energies of the reaction intermediates (I1–I5), transition states (TS1–TS5), and products with respect to the separated reactants are given in kcal mol⁻¹.

and forms ³I1 with -4.5 kcal mol⁻¹ after adsorption. Then the H-H bond in ³I1 ($d_{\text{H-H}}$ = 81 pm) breaks, forming ³I2 (-3.3 kcal mol⁻¹, and $d_{\text{H-H}} = 177 \text{ pm}$) with a high energy barrier of 24.1 kcal mol⁻¹, or ¹I2 (-9.8 kcal mol⁻¹) through a spin-crossover. ¹I2 is energetically more favorable than ³I2, and it can also be obtained directly from the adsorption of H₂ on singlet 2-4a without any energy barriers. From ¹I2, one H atom may transfer to a neighboring S atom to form ¹I3 or ³I3. The barrier is very high $(39.5 \text{ kcal mol}^{-1})$ along the path with the singlet state. The path from ¹I2 to ³I3 with a spin-crossover is more favorable, but it still has an overall barrier (10.9 kcal mol⁻¹), and ³I3 has a positive relative energy. The H atom on S in ³I3 tends to transfer to the other Mo atom to form ¹H-2-4a-H or ³H-2-4a-H. Although these products are lower in energy than ¹I2, they actually cannot be formed in reactions of H₂ with 2-4a considering the high energy barriers from ¹I2 to them. Recently, Gupta *et al.* studied the dissociation of H_2 on anionic $Mo_2S_4^{-35}$ and our results on neutral Mo₂S₄ have many similarities to theirs. Both neutral and anionic systems start with high spin multiplicity (triplet and quartet for neutral and anionic clusters, respectively) which is lower in energy, while low spin multiplicity is preferred for the dissociative adsorption of H₂ on one Mo atom (e.g., ¹I2 in this work). The low spin state isomers with two H atoms adsorbed separately on different Mo atoms are found to be the most stable intermediates for both charge states. The only difference is that for a neutral system, there exists a stable adsorption isomer (³I1) in which H₂ is not dissociated, which may be a favorable factor for H₂ adsorption in the initial stage.

Different situations are found for H_2 on 3–3b, whose ground state is also a triplet (Fig. 4(b)). H_2 can be adsorbed on one Mo atom to form ³I4, but ³I4 is not stable and it can transform to a much more stable isomer (³I5) with a negligible barrier (³TS4, 0.1 kcal mol⁻¹ with respect to ³I4). The singlet ¹I5, which could be obtained directly from 3–3b or from ³I4 through a spincrossover, is even more stable than ³I5, but the energy difference is only 1.6 kcal mol⁻¹. ¹I5 and ³I5 are the most stable intermediates for H_2 on 3–3b, in which H_2 is dissociated with one H on an Mo atom and the other one on the bridge site of Mo–Mo. The bridging bonded H atom can move to the other Mo atoms to form H-3–3b-H (two H atoms adsorbed on different Mo atoms). The relative energies of all isomers and transition states are less than zero, indicating that the transformation of H_2 on 3–3b is much easier than that on 2–4a.

For 3–3b, the vacant bridge site of Mo–Mo is a favorite site for H atom adsorption (see ¹I5 and ³I5 with very low relative energy), and the H atom can be transferred between the two Mo atoms through this bridge site easily (a bridge for H atom transfer). On the other hand, the bridge sites in 2–4a have been occupied by S atoms, leading to the difficulty in the H atom transfer on 2–4a. The vacant Mo–Mo bridge site corresponds to the S vacancy in the bulk phase MoS₂, and the dissociation reaction could be viewed as the reverse process of the HER. Therefore, our findings that 3–3b with a vacant Mo–Mo bridge site has lower barriers for both H₂ dissociation and the HER are consistent with previous studies on the bulk phase MoS₂ in which promising electrocatalysts for the HER can be obtained by increasing the number of S vacancies in MoS_2 .^{68,69} Our results also indicate that H atoms prefer to be bound to Mo atoms rather than S atoms, which may be another aspect to understand the previous study that monolayer MoS_2 with the Mo edge is more likely to adsorb H atoms and realize the HER.^{11,12}

Conclusions

The geometric and electronic properties of non-stoichiometric neutral $Mo_x S_y$ clusters (x = 2-4; y = 2-10) for the most stable structures and low-lying isomers, together with the adsorption and dissociation of the H2 molecule on selected clusters, were systematically studied by DFT calculations. In the S-deficient clusters, Mo atoms are more likely to come together and form an Mor core. Structures like the bulk 1T phase could be seen not only in stoichiometric clusters but also in non-stoichiometric Mo_xS_y clusters. Another type of structure with square Mo₂S₂ units was found, which might be a new primary unit for two-dimensional molybdenum sulfides. The hydrogen molecule prefers to be adsorbed onto Mo atoms rather than S atoms, and Mo atoms with less coordination of S tend to have a higher local ESP and higher ability to adsorb H₂. Among the studied clusters, 2-4a and 3-3b have the highest H₂ adsorption energy, on which the H₂ molecule is significantly activated. As a reverse reaction of HER, the dissociation of H_2 on 2-4a and 3-3b was studied. Hydrogen atoms are found to be adsorbed onto Mo atoms rather than S atoms, especially on the vacant bridge site of Mo-Mo in 3-3b, which could be seen as the S vacancy in the bulk phase MoS₂. The bridge site of Mo-Mo facilitates the transfer of H atoms on Mo_xS_v clusters, indicating that S vacancies and Mo-edges in the bulk MoS₂ are beneficial for both H₂ dissociation and the HER. The H atom adsorbed on the bridge site of Mo-Mo may serve as another way to supply hydrogen in HDS, which may be verified by further investigations.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 91545122 and No. 61704054), the Fundamental Research Funds for the Central Universities (JB2015RCY03, JB2019MS052, and JB2017MS056) supported by the fund of North China Electric Power University, and the National Key Research and Development Program of China (2016YFA0202401).

Notes and references

- Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. B. Chorkendorff, J. K. Norskov and T. F. Jaramillo, *Science*, 2017, 355, eaad4998.
- 2 S. Chu, Y. Cui and N. Liu, Nat. Mater., 2017, 16, 16.

- 3 X. L. Wang, Y. J. Tang, W. Huang, C. H. Liu, L. Z. Dong,
 S. L. Li and Y. Q. Lan, *ChemSusChem*, 2017, 10, 2402.
- 4 X. X. Zou and Y. Zhang, Chem. Soc. Rev., 2015, 44, 5148.
- 5 D. Voiry, J. Yang and M. Chhowalla, *Adv. Mater.*, 2016, **28**, 6197.
- 6 X. L. Wang, C. Z. Xue, N. N. Kong, Z. Wu, J. X. Zhang, X. Wang, R. Zhou, H. P. Lin, Y. Y. Li, D. S. Li and T. Wu, *Inorg. Chem.*, 2019, 58, 12415.
- 7 J. S. Wang, J. Liu, B. Zhang, X. Ji, K. Xu, C. Chen, L. Miao and J. J. Jiang, *Phys. Chem. Chem. Phys.*, 2017, **19**, 10125.
- 8 J. Kang, S. Tongay, Z. Jian, J. Li and J. Wu, *Appl. Phys. Lett.*, 2013, **102**, 012111.
- 9 M.-R. Gao, M. K. Y. Chan and Y. Sun, *Nat. Commun.*, 2015, 6, 7493.
- Y. Xu, L. Wang, L. Xia, S. Zhang, C. Liu, D. Yan, Y. Zeng,
 P. Yong, Y. Liu and S. L. Luo, *J. Mater. Chem. A*, 2016,
 4, 16524.
- T. F. Jaramillo, K. P. Jorgensen, J. Bonde, J. H. Nielsen, S. Horch and I. Chorkendorff, *Science*, 2007, 317, 100.
- 12 K. K. Ghuman, S. Yadav and C. V. Singh, *J. Phys. Chem. C*, 2015, **119**, 6518.
- 13 A. Y. Lu, X. L. Yang, C. C. Tseng, S. X. Min, S. H. Lin, C. L. Hsu, H. N. Li, H. C. Idriss, J. L. Kuo, K. W. Huang and L. J. Li, *Small*, 2016, **12**, 5530.
- 14 L. X. Lin, N. H. Miao, Y. Wen, S. W. Zhang, P. Ghosez, Z. M. Sun and D. A. Allwood, ACS Nano, 2016, 10, 8929.
- 15 H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov and X. Zheng, *Nat. Mater.*, 2015, 15, 364.
- 16 C. Tsai, H. Li, S. Park, J. Park, H. S. Han, J. K. Norskov, X. L. Zheng and F. Abild-Pedersen, *Nat. Commun.*, 2017, 8, 15113.
- 17 J. Chen, N. Kuriyama, H. Yuan, H. T. Takeshita and T. Sakai, J. Am. Chem. Soc., 2001, 123, 11813.
- 18 N. H. Song, Y. S. Wang, H. Y. Gao, W. F. Jiang, J. Zhang,
 B. Xu, Q. Sun and Y. Jia, *Phys. Lett. A*, 2015, **379**, 815.
- 19 Z. M. Yuan, B. W. Zhang, Y. H. Zhang, S. H. Guo, X. P. Dong and D. L. Zhao, *J. Mater. Sci. Technol.*, 2018, 34, 1851.
- 20 E. J. Setijadi, X. Li, A. F. Masters, T. Maschmeyer and K.-F. Aguey-Zinsou, *Int. J. Hydrogen Energy*, 2016, **41**, 3551.
- 21 Y. H. Jia, S. M. Han, W. Zhang, X. Zhao, P. F. Sun, Y. Q. Liu, H. Shi and J. S. Wang, *Int. J. Hydrogen Energy*, 2013, 38, 2352.
- 22 J. V. Lauritsen, M. V. Bollinger, E. Laegsgaard, K. W. Jacobsen, J. K. Norskov, B. S. Clausen, H. Topsoe and F. Besenbacher, *J. Catal.*, 2004, **221**, 510.
- 23 P. G. Moses, B. Hinnemann, H. Topsoe and J. K. Norskov, J. Catal., 2007, 248, 188.
- 24 A. Baloglou, M. Oncak, M. L. Grutza, C. van der Linde,
 P. Kurz and M. K. Beyer, *J. Phys. Chem. C*, 2019, 123, 8177.
- 25 Q. Y. Liu and S. G. He, Chem. J. Chin. Univ.-Chin., 2014, 35, 665.
- 26 P. Murugan, V. Kumar, Y. Kawazoe and N. Ota, *Phys. Rev. A: At., Mol., Opt. Phys.*, 2005, **71**, 063203.
- 27 Y. Y. Wang, J. J. Deng, X. Wang, J. T. Che and X. L. Ding, *Phys. Chem. Chem. Phys.*, 2018, **20**, 6365.
- 28 H. Jiao, Y.-W. Li, B. Delmon and J.-F. Halet, J. Am. Chem. Soc., 2001, 123, 7334.

- 29 X. Zhang, X. Liu, R. Xu, N. Wu, X. Huang and B. Wang, *Chin. J. Struct. Chem.*, 2018, 37, 497.
- 30 M. Ziane, F. Amitouche, S. Bouarab and A. Vega, *J. Nanopart. Res.*, 2017, **19**, 380.
- 31 S. Gemming, J. Tamuliene, G. Seifert, N. Bertram, Y. D. Kim and G. Gantefor, *Appl. Phys. A: Mater. Sci. Process.*, 2006, 82, 161.
- 32 N. Bertram, Y. D. Kim, G. Gantefor, Q. Sun, P. Jena, J. Tamuliene and G. Seifert, *Chem. Phys. Lett.*, 2004, **396**, 341.
- 33 S. Gemming, G. Seifert, M. Götz, T. Fischer and G. Ganteför, *Phys. Status Solidi B*, 2010, 247, 1069.
- 34 P. Liu, Y. Choi, Y. X. Yang and M. G. White, *J. Phys. Chem. A*, 2010, **114**, 3888.
- 35 A. K. Gupta, J. E. Topolski, K. A. Nickson, C. C. Jarrold and K. Raghavachari, *J. Phys. Chem. A*, 2019, **123**, 7261.
- 36 N. J. Mayhall, E. L. Becher, A. Chowdhury and K. Raghavachari, J. Phys. Chem. A, 2011, 115, 2291.
- 37 J. E. Topolski, A. K. Gupta, K. A. Nickson, K. Raghavachari and C. C. Jarrold, *Int. J. Mass Spectrom.*, 2018, **434**, 193.
- 38 A. Saha and K. Raghavachari, J. Chem. Phys., 2013, 139, 12.
- 39 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, I. M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16, Rev. A.03, Gaussian Inc, Wallingford, CT, 2016.
- 40 X. L. Ding, Z. Y. Li, J. H. Meng, Y. X. Zhao and S. G. He, J. Chem. Phys., 2012, 137, 214311.
- 41 L. F. Li and L. J. Cheng, J. Chem. Phys., 2013, 138, 094312.
- 42 X. N. Li, L. N. Wang, L. H. Mou and S. G. He, *J. Phys. Chem.* A, 2019, **123**, 9257.
- 43 X. L. Ding, D. Wang, R. J. Li, H. L. Liao, Y. Zhang and H. Y. Zhang, *Phys. Chem. Chem. Phys.*, 2016, **18**, 9497.
- 44 A. D. Becke, Phys. Rev. A: At., Mol., Opt. Phys., 1988, 38, 3098.
- 45 A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
- 46 C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1988, **37**, 785.
- 47 F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297.
- 48 B. Liang and L. Andrews, J. Phys. Chem. A, 2002, 106, 6295.
- 49 B. Wang, N. Wu, X. B. Zhang, X. Huang, Y. F. Zhang, W. K. Chen and K. N. Ding, *J. Phys. Chem. A*, 2013, **117**, 5632.
- 50 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, *J. Chem. Phys.*, 2010, **132**, 154104.

- 51 J. Zheng, X. Xu and D. G. Truhlar, *Theor. Chem. Acc.*, 2011, **128**, 295.
- 52 N. Bridonneau, J. Long, J. L. Cantin, J. von Bardeleben, S. Pillet, E. E. Bendeif, D. Aravena, E. Ruiz and V. Marvaud, *Chem. Commun.*, 2015, **51**, 8229.
- 53 B. Bishnoi and B. Ghosh, J. Comput. Electron., 2014, 13, 394.
- 54 E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis and F. Weinhold, *NBO 6.0.*, Madison, WI, Theoretical Chemistry Institute, University of Wisconsin, 2013.
- 55 P. Xiao, W. Chen and X. Wang, *Adv. Energy Mater.*, 2015, 5, 1500985.
- 56 J. K. Norskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov and U. Stimming, *J. Electrochem.* Soc., 2005, 152, J23.
- 57 L. Wu, A. Longo, N. Y. Dzade, A. Sharma, M. Hendrix, A. A. Bol, N. H. de Leeuw, E. J. M. Hensen and J. P. Hofmann, *ChemSusChem*, 2019, **12**, 4383.

- 58 N. Kaur, I. Kumari, S. Gupta and N. Goel, *J. Phys. Chem. A*, 2016, **120**, 9588.
- 59 J. B. Ma, X. N. Wu, X. X. Zhao, X. L. Ding and S. G. He, *Phys. Chem. Chem. Phys.*, 2010, **12**, 12223.
- 60 P. Jena and Q. Sun, Chem. Rev., 2018, 118, 5755.
- 61 G. J. Kubas, Acc. Chem. Res., 1988, 21, 120.
- 62 J. Niu, B. K. Rao and P. Jena, Phys. Rev. Lett., 1992, 68, 2277.
- 63 T. Lu and F. W. Chen, J. Comput. Chem., 2012, 33, 580.
- 64 T. Lu and F. W. Chen, J. Mol. Graphics, 2012, 38, 314.
- 65 X. X. Wang, X. Liu, Q. Zhang and H. S. Chen, *Acta Phys. Sin.*, 2017, 66, 103601.
- 66 P. B. Armentrout, Science, 1991, 251, 175.
- 67 D. Schroder, S. Shaik and H. Schwarz, Acc. Chem. Res., 2000, 33, 139.
- 68 D. Kiriya, P. Lobaccaro, H. Y. Y. Nyein, P. Taheri, M. Hettick, H. Shiraki, C. M. Sutter-Fella, P. D. Zhao, W. Gao, R. Maboudian, J. W. Ager and A. Javey, *Nano Lett.*, 2016, **16**, 4047.
- 69 M. C. He, F. P. Kong, G. P. Yin, Z. Lv, X. D. Sun, H. Y. Shi and B. Gao, *RSC Adv.*, 2018, 8, 14369.