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Abstract: In this paper, a probabilistic load flow analysis is proposed in order to deal with 

probabilistic problems related to the power system. Due to increasing trend of penetration of 

renewable energy sources in power system brought two factors: One is uncertainty, and another one 

is dependence. Uncertainty and dependence factor increase risk associated with power system 

operation and planning. In this proposed model these two factors is considered. Gaussian Copula 

theory is proposed to establish the probability distribution of correlated input random variables. 

Three sampling methods are used with Monte Carlo simulation as simple random sampling, 

Box-Muller sampling, and Latin hypercube sampling in order to evaluate the accuracy of the 

proposed method. The main advantages of this model are as: It can establish any type of correlation 

between input random variable with the help of Copula theory, it is free from the restrictions of 

Pearson coefficient of correlation, it is unconstrained by the marginal distribution of input random 

variables, and uncertainty is established with photovoltaic generation this is the main source of 

uncertainty. Additional, in order to evaluate the accuracy and efficiency of the proposed model a real 

load and photovoltaic generation data is adopted. For accuracy evaluation purpose two comparative 

test system is adopted as modified IEEE 14 and IEEE 118-bus test system. 
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1. Introduction 

Currently, the electric power system is confronting many uncertainties. The main source of 

these uncertainties is penetration of renewable energy sources in power system network. Among 

these renewable energy sources, photovoltaic (PV) generation and wind energy generation are the 

dominant sources of uncertainty. Due to randomness nature of uncertainty, it increases the risk 

associated with electric power system operation modes and further has an influence on load flow 

analysis. Most of these uncertainties are dependent. This dependence relationship can be linear or 

non-linear. For example, the loads in the same area can be increased or decrease in a same time due 

to environmental and social ones. Similarly, the output power of wind energy sources is strongly 

correlated with the wind speed of neighboring measuring stations [1,2]. On the other hand, the power 

system highly uncertain due to changing pattern of power demand like the transport (electric 

mobility) and heat sectors (heat pumps in buildings) [1]. Safeguarding the reliability of the power 

system is a key enabler for this massive system transformation. For the operation of future power 

systems, new methods are needed to incorporate the different sources of uncertainty (contingencies, 

load and renewable energy source forecast errors) during the operational planning stage and to help 

system operators to steer the system into risk-averse modes of operation [3–5]. 

The probabilistic load flow (PLF) analysis is a tool that can handle uncertainties in the 

efficient and effective way. The PLF is a steady-state load flow analysis to determine the network 

parameters by considering uncertainty with input random variables flexibly. The information 

obtained by PLF analysis is used for power system security assessment, operation and control 

purpose. In literature, many PLF methods have been used in order to deal with correlated input 

random variables. In these methods included: Gaussian mixture model method [6–8], point 

estimation method [9–11], convolution method [12,13], cumulant method [8,14], unscented 

transformation [15], and Monte Carlo simulation (MCS) [16–19]. MCS methods are the most 

popular methods among all of above methods. It is due to its simplicity and ability to handle 

complex non-linear problems. Most of the above methods only deal with a linear dependence. 

Additional, the Persons linear correlation coefficient has been used for measuring the degree of 

dependence. Most of the nature uncertainties are not linear. This proposed model can handle this 

non-linear dependence more flexible. 

All methods used for PLF can be divided into four categories. These categories are as numerical 

methods, analytical methods, approximate methods, and hybrid methods [20]. A numerical MCS 

method with simple random sampling (SRS) has been used frequently for PLF power system 

problems. MCS with SRS can be express as SMCS. SMCS method has been used as a reference for 

accuracy comparison in PLF studies [5,8,10,15,21–24]. From the literature, it is clear that no one 

method is more accurate than SMCS in term of accuracy. However, it suffers heavy computational 

burden to achieve the desired accuracy. To overcome computational burden, in literature many 

methods have been used such as convolution techniques [12,13]. The convolution base methods are 

also time-consuming due to discrete point problems. Point estimation based methods have lesser 
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computational burden but less accurate. In fact, there are no holistic criteria for PLF evaluation. 

Always there is a compromise between computational burden and accuracy. But currently, a third 

moment has been started to overcome computational burden and accuracy problems. This moment is 

to hybrid methods like combined cumulants and Laplace transform method [25], combine cumulant 

and Gaussian mixture method [8], cumulant and multiple integral method [26], second order design 

method [17]. Actually, the accuracy and computational burden of PLF methods highly depend upon 

the modelling of input uncertainty and sampling techniques. 

The contribution in this research work has many aspects included: Almost all of the methods in 

literature can only deal with a linear correlation between input random variables and have been 

considered Pearson linear correlation coefficient. This Pearson linear correlation coefficient some 

time cannot measure the degree of correlation. For example: 1) it cannot measure non-linear 

dependence between input random variable; 2) it can’t measure dependence for those distributions 

that have not define standard deviation; 3) it is invariant under strictly increasing transformation. To 

overcome this problem in this work Gaussian Copula theory is proposed that can handle linear and 

non-linear problems flexibly. By using Copula theory, a desirable correlation can be achieve between 

input random variables. The other aspect of this work is modelling of input uncertainty. The PV 

generation and correlated load are used for modelling the input uncertainty. The special in this work 

real data about PV generation and load are used for accuracy comparison purpose. Additional, the 

Box-Muller sampling (BMS) and Latin hypercube sampling (LHS) are used for accuracy and 

computational burden comparison purpose. The SMCS is used for a benchmark for other methods in 

term of accuracy and computational burden. MCS combine with BMS can be express as BMCS and 

MCS combine with LHS can be express as LMCS. For three methods, Copula theory is used for 

capturing the complex stochasticity of correlated loads and PV generation. The modified IEEE 14-bus 

and IEEE 118-bus test system is used for obtaining results. 

The paper is organized as follows. Section 2 describes the modelling of the probability 

distribution of input random variable included correlated loads and correlated PV generation. 

Section 3 describes the methodology, and sampling techniques included SRS, BMS, and LHS. 

Section 4 describes the PLF analysis procedure. Section 5, evaluate the performance analysis of 

proposed methods. Finally, conclusions are drawn in Section 6. 

2. Modelling of input random variables for uncertainty 

The accuracy and computational efficiency of PLF analysis usually depending upon three major 

factors included: a) Uncertainty handing method; b) Accurate power system model; c) Accurate 

modelling input random variable uncertainty. 

2.1. Modelling of correlated loads for uncertainty 

There are normally two methods for measurement of correlation between random variable with 

respect to degree and structure. First one is Pearson’s linear correlation coefficient that can only 

measure the degree of correlation Eq 1. The second one is rank correlation coefficient and Copula 

theory that can measure the degree as well as the structure of correlation. In this work, Copula theory 

is proposed to measure the structure as well as the degree of correlation between random variables 

flexibly. This theory can measure the linear and non-linear correlation between random variables. 
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More, it is invariant under strictly increasing transformation. The correlation matrix for n input 

random variable is shown in Eq 1 as: 

21 1

21 2

1 2
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n

n n

Cor matrix

 

 

 

 
 
 
 
 
 

                                (1) 

Where ij  is the correlation coefficient and can be calculated as cov(W ,W ) /ij i j i j    where 

i  and j  is the standard deviation of a random variable iW  and jW  respectively and 

cov(W ,W )i j  is the covariance. According to Copula theory, it can be express as in Eq 2 for bivariate: 

12 1 2 1 1 2 2( , ) ( ( ), ( ))F w w C F w F w                            (2) 

Where C is a copula function, according to Sklar theorem [27]. It couples multivariate joint 

distribution CDF to one dimensional marginal CDFs. 1 1( )F w  and 2 2( )F w  are the marginal CDF of 

two random variables W1 and W2 respectively. 12 1 2( , )F w w  is the joint CDF of these two random 

variables. 1 1 2 2( ( ), ( ))C F w F w  is the Copula density function, and it must follow the Sklar theorem 

property as mention in Eq 3: 
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It can be extended to multivariate as in Eq 4, m is the number of random variables: 
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 is the Copula density function for multivariate 

random variables. 

There are many Copula families, but famous one is included elliptical Copula and Archimedean 

Copula. Here, Gaussian Copula is proposed to measure the dependence between input random 

variables that belong to Archimedean Copula family. All loads PDFs are modelled as a Gaussian 

distribution follows the Eq 5: 
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Where x is the required value for which probability distribution function (PDF) needed,   is 

the mean value of the load, and   is the arbitrary value of standard deviation. To show the accuracy 

of modelled load PDF is compare with actual one day load at MAISY utility customer energy use 

with per hourly interval available in [28]. Figure 1 shows the PDFs and CDFs of real, generated, and 

ideal data of loads. Gaussian Copula function is used to establish the desired correlation between 

different random variables (loads) in the proposed network. The PDFs of multivariate Gaussian 

distribution with desirable correlation can be found by Eq 6. 

 

Figure 1. Probability density function (PDF) and Cumulative density function (CDF) of 

real, generated, and ideal data for loads are shown in (a) and (b) respectively. 

 

1 1
1 1

1

1 1

( ) ( )

.......... ..........1 1
( ) exp .( ).

.......... ..........2det .

( ) ( )

T

Gauss
R

d d

u u

C u R I
R

u u

 

 

 



 

    
    
    

      
    
         

                    (6) 

Where R is the correlation matrix belong to  1,1
d d

 , C show the correlation density function, 1  

is the inverse CDF of standard normal distribution, 1,........., du u  is the random variables, d is the number 

of variables, and I is the identity matrix. The correlation of bivariate function over unit domain 

from weak to strongly correlated loads with the help of Gaussian Copula is shown in Figure 2. 
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Figure 2. Scatter plots of correlated loads in unit domain (a) ρ = 0.6; (b) ρ = 0.8; (c) ρ = 0.9; 

(d) ρ = 0.99. 

2.2. PV generation modelling for uncertainty 

In this work, PV generations are model as a beta distribution with the help of Eq 7. The 

historical solar power data for integration studies located at California western state is taken to 

check the accuracy of modelled PV generation available at National Renewable Energy Laboratory 

(NREL) [29]. One day data (Jun 1, 2006) with a 5-minute interval is taken to check the accuracy of 

the proposed model. 
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                           (7) 

Where x is the observed values or realization, α and β are the shape parameters and always α, 

β > 0, Ґ is the gamma function. The PDFs and CDFs of real, generated, and ideal values model 

with the help of Eq 7 are shown in Figure 3. 

 

Figure 3. Probability density function (PDF) and Commutative density function (CDF) of 

PV generation with real, generated, and ideal data are shown in (a) and (b) respectively. 
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3. Methodology 

Monte Carlo Simulation is an iterative approach, mostly used for probabilistic load flow 

analysis. In this approach cumulative distribution function is prepared of a random variable to 

obtain the uncertainty. To model, the CDF of a random variable is an essential step in this approach. 

Accurate modelling of CDF give the accurate final results. In this numerical approach, in order to 

model the uncertainty as a random variable, three basic steps are needed as shown in Figure 4: (1) 

to model CDF of random variable; (2) to solve the deterministic load flow model; (3) statistical 

analysis of results. 

Random 

number 

Generator 

with CDF

Deterministic 

Load flow 

analysis

Simulation 

process

Statistical 

Analysis

Step 1 Step 2 Step 3

x
x1

 x2

.

 xn

y1

 y2

.

 yn

 

Figure 4. Monte Carlo Simulation steps. 

Monte Carlo Simulation process can be described by Eq 8: 

(X)Y h                                        (8) 

1[X ,.....,X ]TnX                                   (9) 

1[Y ,......,Y ]TnY                                   (10) 

Where in Eq 8–10, X is the vector of input random variable, Y is a vector of output random 

variables vector, and h is the function of the model under study. The object of study is to obtain PDF 

of Y at given known PDF of X. T shows the transpose. 

3.1. Simple random sampling 

Simple random sampling techniques is a theoretical basis technique to design other methods. 

The variance of the mean of output variable is calculated to find the robustness of sampling 

techniques [30]. The mean of the sample is calculated as in Eq 11: 

_
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1
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i
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y y
N
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                                    (11) 
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Where N is the number of samples, y  is the expected value and iy  is the output value of ith 

iteration. The variance of the sample can be obtained as in Eq 12: 

_
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1
var( ) ( )
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i

i

y y y
N



                              (12) 

The variance of the estimating mean can be determined by Eq 13: 

_ 1
var( ) var(y)y

N
                                (13) 

3.2. Box-Muller sampling 

Box-Muller sampling is also as a sampling technique. In order to determine the sample of given 

iteration, firstly two random number from uniform distribution in the range of (0, 1) is generated. 

The sample should be determined by following Eq 14: 

   1 2cos 2 2i i iS u ln u                                 (14) 

Where, Si = is the ith sample; µ = mean value of random variable; σ = standard deviation of a 

random variable; u1 & u2 = uniformly distributed random number in range of (0, 1). For the proposed 

PLF model, µi and σi are the base load and standard deviation for input variable. 

3.3. Latin hypercube sampling 

Latin hypercube sampling (LHS) is the type of stratified sampling. It uses to generate a sample 

of a random variable from entire distribution. In this technique, random variable distribution is 

divided into equal probability distribution intervals. Each interval is sample exactly once in its entire 

range of the random variable. In this way, sample value represents the higher sampling efficiency. 

The sampling procedure is as follows: 

( )n n nY F G                                     (15) 

Where in Eq 15, Yn is the CDF of N input random variables such that 1,........,Gn NG G  in 

probability theory, in range Yn = [0, 1]. If the sample size is denoted by K. If the entire range of YN is 

divided into k non-overlapping intervals than each interval length is equal to 1 / k  as shown in 

Figure 5. The sample value is generated from each interval without replacement randomly or 

midpoint value. In this work, midpoint value is chosen, and this method is call lattice sampling. The 

sampling value of nG  can be computed by taking the inverse function of Eq 16. The nth sample can 

be computed as in Eq 16: 
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Figure 5. Illustration of latin hypercube sampling procedure. 
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The sample values of Gn can be assembled as in Eq 17 in the row of sampling matrix: 

1[ ,......., ]n nNG G                                   (17) 

From this procedure, the n × k matrix can be obtained. 

As described in Section 3.1 the robustness of sampling techniques can be measure on the mean 

output statistic [30]. Therefore, the mean and variance can be computed by using Eq 11 and Eq 12 

respectively. The variance of the estimated mean can be computed with the help of Eq 18: 

_

1 2

1 1
( ) var( ) (G ,G )

N
Var y y con

N N


                          (18) 

Where 1 2(G ,G )con  is the covariance between random variables. 

4. Probabilistic load flow evaluations 

The deterministic load flow analysis can be described by Eq 19: 

(X)Y h                                    (19) 

Where X is the input vector of nodal active and reactive power injections. Y is the output vector 

of voltage (V), voltage phase angle (θ), active load flow (Pij), reactive load flow (Qij), h(X) is the load 

flow function [31]. In case of PLF analysis, correlated nodal loads, PV generation, and conventional 

generator are the input random variable with their probability distribution functions. The statistical 

distribution of output variables V, θ, P, and Q are calculated. There are following steps used to 

perform PLF analysis: 
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 Prepare the CDF of model correlated loads and correlated PV generations, to set all basic 

requirement for deterministic load flow analysis, e.g. sample size N. 

 To determine the input random variables G. 

 To select the desire sampling procedure. 

 To generate the sample matrix N × k. 

 To set the initial starting point n = 1. 

 To perform the deterministic load flow analysis and obtain the values of V, θ, P, Q. 

 Set 1;n n   if n N  go to step 6. Otherwise, go to next step. 

 To do a statistical analysis of output random variable V, θ, P, Q. 

5. Performance evaluation of proposed methods 

A series of PLF analysis is carried out to determine the performance of SMCS, BMCS, and 

LMCS. The PLF analysis is carried out on modified IEEE 14-bus test system and IEEE 118-bus 

test system. The program is developed with “DIgSILENT PowerFactory (15.1) platform. The 

simulation was performed on PC with AMD A12-9700P, RADEON R7, 10 COPMPUTE CORES 

UC+6G, 2.5 GHZ processing speed, and 8 GB RAM”. The results obtained by the proposed method 

are compared with correlated SMCS. 

To determine the accuracy of proposed model two error indices are introduced in Eq 20 and 

Eq 21 [9,10] are adopted. 

* 100%
acc pro

acc


 





                                 (20) 

* 100%
acc pro

acc


 





                                  (21) 

Where *
  is an error of the output random variables with * category (* represents V, θ, P, 

and Q). Second *
  is an error of standard deviation with the * category. The results obtained by the 

SRS method with a sample size of 20,000 are assumed to be accurate and benchmark. The mean and 

standard deviation of SMCS method are express as µacc and σacc respectively. Similarly, the mean and 

standard deviation of proposed methods are express as µpro and σpro respectively. *
  and *

  are the 

average error index and average standard deviation error index that determined the distribution 

convergence of entire system. 

To evaluate the convergence of two methods, each method is run 100 times with certain sample 

size. In this way, 100 values of *
  and *

  are calculated with four variable categories. For 100 

times calculation, two indices are introduced. First one is the mean of the standard deviation error. 

The second one is the mean of a maximum of error. The standard deviation error is the standard 
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deviation error obtain from 100 calculations for each output categories and denoted by *
100 . The 

mean of the standard deviation error is the mean of 100  each specific type of output random 

variables and denoted by 
_

100 . This 
_

100  show the stability of two methods. The maximum error 

of each output random variables are calculated in term of its mean and standard deviation. The mean 

of maximum of error is calculated is express as 
_

,max  for each output categories. Similarly, mean of 

the maximum of error standard deviation is calculated and denoted by 
_

,max  for each output 

random variable is calculated. For example, let 1,......, nV V  is the voltage magnitude of the n node test 

system and 1 100,......,
i iV V     be the error of iV  after 100 calculations 1,.....,i n . Then

1 100
,max max{ ,......., }, 1,......,i

i i

V
V V i n       . For voltage variable mean of the maximum of error is 

calculated as max max

1

1
i

n
VV

i
n

  
 



  . Similarly, other variable statistic can be obtain. 

5.1. The modified IEEE 14-bus test system 

All deterministic load flow data about this test system is available in [32]. The modified 

IEEE 14-bus test system is shown in Figure 6. There are total 23 input random variables in this test 

system. The load distribution is followed Gaussian distribution and discrete, and generator output 

follows the binomial distribution. The PLF analysis with 20,000 times MCS with SRS sampling 

consider to be the benchmark for other two methods and consider to be accurate and use to determine 

the error for other methods as it is usual practice in PLF study [9,10]. Two kinds of correlation is 

adopted in this test system. First one is between load and other is between active power outputs of 

PV generations. The constant power factor load model is adopted. The detail load parameters are 

presented in Table 1. 
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Figure 6. Modified IEEE 14-bus test system. 

Table 1. Parameters of loads. 

Node No. Mean (p.u) StdDev (p.u) Power Factor 

2 0.215 0.065 0.864 

3 0.943 0.031 0.991 

4 0.481 0.115 0.365 

5 0.074 0.036 0.978 

6 0.111 0.037 0.833 

9 0.295 0.156 0.872 

10 0.094 0.036 0.823 

11 0.036 0.015 0.889 

12 0.061 0.024 0.965 

13 0.134 0.048 0.919 

14 0.151 0.062 0.949 

All loads are divided into three groups as  1 2,3,4,5,6G  ,  2 10,11,12,13,14G   and  9 . The 

correlation matrix between G1 is presented in Eq 22 and correlation matrix between G2 is presented 

in Eq 23. The correlation between same group loads is dependent as shown in Eq 22 and Eq 23 and 

also correlation between different load groups also dependent with 0.5 correlation coefficient. 
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Load 9 is correlated with active power output of PV generation available at node 9 with 

correlation coefficient 0.6. Two PV generation is located at node 9 with installed capacity 0.1 p.u, the 

active power of PV generation follow the Eq 7 and reactive power assumed to be zero [33,34]. The 

correlation coefficient matrix between two PV generation and load 9 is presented in Eq 24. 

9

1 0.9 0.6

0.9 1 0.6

0.6 0.6 1

PV LG 

 
 

  
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                               (24) 

The simulation is change from 100 to 1000 with step size 100. In order to evaluate the 

performance of SMCS, BMCS, and LMCS error curve are adopted. All the error indices are 

calculated for all type of output random variables included voltage magnitude, phase angle, active 

power, and reactive power. The error indices of only active power are consider for presenting the 

results for all four categories of variables. 

5.2. Simulation results analysis of IEEE 14-bus test system 

In the simulation analysis, three types are error indices are calculated as average error, mean of 

the maximum error, and mean of the standard deviation error indices. The average error index 

determines the distribution convergence degree of the entire system with corresponding output 

random variable. The other two error indices as mean of the standard deviation error and mean of the 

maximum of error are determine the stability of the entire method. For obtaining these error indices 

simulation is performed 100 times for 1000 samples with 100 step size. 

The results of Figure 7 (a–c) illustrate the mean of the maximum of error curves with three 

methods. To present the results only active power through the line 2–3 was considered for IEEE 14-bus 

test system. It shows the percentage of the mean of maximum of error for 100 sample size to 1000 

sample size with 100 step size of three methods SMCS, BMCS, and LMCS. The mean of the 

maximum of error of three methods SMCS, BMCS, and LMCS was almost 4.88%, 3.56%, and 0.96% 

respectively with 100 sample size. Similarly, this error index was 2.15%, 1.16%, 0.15% with 1000 

sample size. This error index promptly reduces at 200 sample size, after 200 sample size it remains 

almost constant. Finally, the results of Figure 7 (a–c) shows that LMCS method is more stable 

method than other two methods. The results of Figure 7 (d–f) illustrate the average error index for 

three methods. Form these results, it is clearly shown that the LMCS has 0.10% error, but the other 

two method SMCS and BMCS have 0.71% and 0.58% respectively with 1000 sample size. This 

show that the LMCS method is best convergence degree for proposed test system rather than other 

two methods. The results of Figure 7 (g–i) illustrate the mean of the standard deviation error. This 

show that the LMCS has 0.11% error and other two methods have 0.42% and 0.32% respectively 
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with 1000 sample size. Form these results, it is clearly shown that the LMCS is more stable method 

than the other two methods. 

 

Figure 7. Mean of the maximum error (a–c), average error indices (d–f), and mean of the 

standard deviation error (g–i) curves for active power through the line 2–3 for 

corresponding method. 

The standard deviation error indices are presented in Figures 8 (a–i). The mean of maximum error 

of standard deviation is presented in Figure 8 (a–c), average of standard deviation error index is in 

Figure 8 (d–f), and mean of standard deviation error is in Figure 8 (g–i). All of these indices are 

calculated with 1000 sample size. The mean of maximum of standard deviation error index of LMCS 

method was with 1.49%, but the SMCS and BMCS have 3.36% and 2.23%. Similarly, average 

standard deviation error index of LMCS was 0.40%, but the SMCS and BMCS have 2.23% and 0.44%. 

Similarly, mean of standard deviation error index of LMCS was 0.16%, but the SMCS and 

BMCS have 0.28% and 0.20%. All of these results prove that LMCS method is much better than 

SMCS but almost identical to BMCS method according to distribution convergence and stable point 

of view. 

 

Figure 8. Mean of maximum standard deviation error (a–c), average standard deviation 

error indices (d–f), and mean of standard deviation error (g–i) curves for active power 

through the line 2–3 for corresponding method. 
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All of the above calculated error indices are for active power output random variable. The 

remaining three output random variables, i.e. voltage magnitude, phase angle, and reactive power 

error indices are very similar to this. These are not shown here due to space limitations. All of the 

remaining output random variable’s error indices are calculated and presented in Table 2 with sample 

size 400. The results of Table 2 show that error indices of all output variable are within 10% with 

SMCS but with BMCS and ILMCS are within 5%. Additional, the PDF and CDF of active power 

flow through the line 2–3 are illustrated in Figure 9. From the results of Figure 9, shows that the 

curves are very close to each other for three methods. All of these curves are calculated with a 

different sample sizes like SMCS with 20,000 samples and BMCS, and LMCS are with 1000 

samples. The accuracy of presented results is almost same but BMCS and LMCS with 1000 sample 

size. The computational time comparison of three methods is shown in Figure 10. The computational 

time of SMCS method with sample size 20,000 was 981 s seconds. The computational time for both 

BMCS and LMCS was almost same like 3.17 s but with 1000 sample size. The computational burden 

of LMCS was very small for desire accuracy. The results of Figure 10 shows the computational 

superiority of ILHS with respect to same sample size. 

Table 2. Error comparison of IEEE 14-bus test system. 

Method SMCS BMCS LMCS Method SMCS BMCS LMCS 
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Figure 9. Probability density function (PDF) and cumulative density function (CDF) of 

active power flow through the line 2–3, (a) and (b) respectively, for three methods as: (a) 

SMCS, (b) BMCS, and (c) LMCS, for IEEE 14-bus test system. 

 

Figure 10. Computational time (seconds) comparison curve for three methods as: (a) 

SMCS, (b) BMCS, and (c) LMCS, for IEEE 14-bus test system. 

5.3. Modified IEEE 118-bus test system 

All of the deterministic data about this test system is available in [32] and also shown in 

Figure 13. All of the assumption and probabilistic data about this test system is same as in [10,31]. 

The total input random variables in this test system are 170. The reaming assumption are almost 

same as in previous test system like loads are follow normally distribution and generator output 

follow binomial distribution. Four PV generator are located at nodes 5, 16, 50, and 53, respectively 

with 0.2 p.u installed capacity. The correlation matrix of four PV generation is shown in Eq 25. 
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                               (25) 

5.4. The simulation results analysis of IEEE 118-bus test system 

By the simulation study, it is shown that the three types of error indices about four output 

variables categories were almost same pattern as in IEEE 14-bus test system. These indices are not 

presented here due to space limitations. The error indices of four categories are presented in Table 3 

but with 800 sample size. The results of Table 3 show that the error indices of SMCS are within 10%, 

with BMCS are within 6%, with LMCS are within 4%. These percentage of error change due to 

increase input random variables. This conclusion shows that LMCS is more stable and distributed 

convergent method than the other two methods. The PDF and CDF curves are shown in Figure 11 of 

active power flow through the line 78–79. From these results, it is shown that LMCS is accurate than 

BMCS and SMCS but in previous test system BMCS was close to LMCS and SMCS methods. The 

accuracy of BMCS in term of PDF and CDF are bring down may be due to increase number of input 

random variables. Additionally, the comparison of the computational time of different sample same is 

shown in Figure 12. The computational time of SMCS method with sample size 20,000 was 5586 

seconds. The computational time for both BMCS and LMCS was almost same like 13.92 s with 1000 

sample size. The computational burden of BMCS and LMCS was very small as compare to SMCS 

for achieving desire accuracy. The results of Figure 12 show the computational superiority of ILHS 

with respect to same sample size. 

Table 3. Error comparison of IEEE 118-bus test system. 

Method SMCS BMCS LMCS Method SMCS BMCS LMCS 
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Figure 11. Probability density function (PDF) and cumulative density function (CDF) of 

active power flow through the line 78–79, (a) and (b) respectively, for three methods as: 

(a) SMCS, (b) BMCS, and (c) LMCS, for IEEE 118-bus test system. 
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Figure 12. Computational time (seconds) comparison curves for three methods as: (a) 

SMCS, (b) BMCS, and (c) LMCS, for IEEE 118-bus test system. 

 

Figure 13. Modified IEEE 118-bus test system. 

6. Conclusion 

Due to increasing trend of penetration of renewable energy sources into power system has 

introduced the uncertainties and dependence factors. The modelling of input random variable for the 

study of uncertainties and dependence effect on power system operation and planning is a challenge 

for future. In this paper, a probabilistic load flow analysis is presented for correlated loads and 

photovoltaic generation. Uncertainty is created with correlated loads and photovoltaic generation. 

Gaussian Copula theory is proposed to establish the correlation between input random variables. 

Form the results; it has proved that Copula theory can establish correlation between input random 
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variables flexibly and overcome the restriction of Pearson’s correlation coefficient. Additional, it is 

unconstrained by the marginal distribution type of input random variables. Two methods of sampling 

has been proposed for analysis purpose. The results obtained by LMCS method is more accurate and 

efficient. When the input random variables were small, the results obtain by BMCS and LMCS 

almost have same accuracy and robustness. But when the input random variable has increased 

BMCS become less accurate as compare to LMCS. As an overall result, LMCS is an efficient 

sampling method for convergence for entire distribution of input random variable, almost 

independent of input random variable, and flexible too. The LMCS method has a large potential in 

order to deal with probabilistic problems with renewable energy sources especially penetration of 

photovoltaic generation in power system network. 
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